2017. szeptember 9., szombat

Emeltszintű érettségire felkészítés informatikából; Személyi számítógépek felépítése

1.1 Személyi számítógépek és alkalmazások
1.1.1 Hol és hogyan használjuk a számítógépeket?
A számítógépek egyre fontosabb és csaknem nélkülözhetetlen szerepet játszanak mindennapjainkban.
Számítógépeket különböző felhasználási területeken használnak szerte a világon. Használják őket az üzleti életben, gyártási környezetekben, otthon, kormányzati irodákban és non-profit szervezeteknél. Az iskolákban a számítógépeket a tanításhoz és a diákok adatainak nyilvántartásához használják. A kórházakban a számítógépeket a betegek adatainak nyilvántartására és az orvosi ellátás biztosításához használják.
Ezeken a számítógépeken kívül számos speciális célra tervezett számítógép is létezik. Az ilyen egyedi igényeket kielégítő számítógépek olyan eszközökbe integrálhatók, mint a televízió, pénztárgép, hangrendszerek vagy más elektronikus készülékek. Sőt olyan készülékekben is megtalálhatók, mint a tűzhely vagy a hűtőszekrény, valamint autókban és repülőgépekben is használják őket.
Számítógépeket különböző céllal a legváltozatosabb helyeken használnak. Különböző méretűek és teljesítményűek lehetnek, de vannak közös tulajdonságaik. A megfelelő működés érdekében három dolognak minden számítógépben együtt kell működnie:
1. Hardver - mind külső, mind belső fizikai összetevők, a számítógép alkotóelemei.
2. Operációs rendszer - olyan programok halmaza, mely kezeli a számítógépes hardvert. Az operációs rendszer szabályozza az erőforrások használatát, beleértve a memóriát és a lemezes tárolót is. Operációs rendszerre példa a Windows XP.
3. Alkalmazás - számítógépre telepített program, mely a számítógép adottságait kihasználva speciális feladatokat lát el. Alkalmazásra példa a szövegszerkesztő program, valamint a számítógépes játék.
1.1.2 Helyi és hálózati alkalmazások
A számítógép használhatósága a rajta futó programoktól és alkalmazásoktól függ. Az alkalmazások két általános kategóriába sorolhatók:
Üzleti/Ipari szoftver - speciális ipari vagy üzleti használatra tervezett szoftver. Példák: egészségügyi programok, oktatási programok, jogi szoftverek.
Általános célú szoftver - Szervezetek széles körében vagy otthoni környezetben, különböző célokra használható szoftver. Ezeket az alkalmazásokat bármely cég vagy egyén használhatja.
Általános célú szoftverekhez tartoznak az olyan integrált alkalmazás csomagok, mint az Office csomag. Az ilyen csomagok leggyakoribb összetevői a szövegszerkesztő, a táblázatkezelő, az adatbázis-kezelő, a bemutató-készítő valamint az elektronikus levelező, kapcsolat- és naptárkezelő program.
CISCO
További népszerű alkalmazások a képszerkesztő és multimédia anyag készítő programok. Ezekkel az eszközökkel lehet képeket szerkeszteni, és gazdag multimédiás bemutatókat készíteni, melyek hangot, videót és grafikát egyaránt tartalmazhatnak.
A szoftverek ipari/üzleti vagy általános célú csoportosítása mellett az alkalmazások a helyi vagy hálózati kategóriákba is besorolhatóak.
Helyi alkalmazás - A helyi alkalmazás olyan program (pl.: szövegszerkesztő), mely a számítógép merevlemezén található. Az ilyen alkalmazás csak az adott számítógépen fut.
Hálózati alkalmazás - A hálózati alkalmazást arra tervezték, hogy hálózaton (pl. az Interneten) keresztül működjön. Egy hálózati alkalmazásnak két összetevője van, az egyik a helyi, a másik egy távoli számítógépen fut. Hálózati alkalmazásra példa az elektronikus levelezés.
A legtöbb számítógépen helyi és hálózati alkalmazások is futnak.
1.2 Számítógépek típusai
1.2.1 Számítógépek osztályozása
Számos különböző típusú számítógép létezik, mint például:
Nagyszámítógépek
Kiszolgálók
Asztali számítógépek
Munkaállomások
Laptopok
Kézi hordozható eszközök
Mindegyik típusú számítógép valamilyen különleges céllal készült, mint például helyváltozás közbeni információ hozzáférés vagy nagyfelbontású képek feldolgozása, stb.
Az otthoni, illetve üzleti életben leggyakrabban használt számítógép típusok a kiszolgálók, munkaállomások, asztali számítógépek, laptopok és más hordozható eszközök. A nagyszámítógépek olyan központi nagygépek, melyeket általában nagyvállalatoknál használnak, és csak erre specializálódott viszonteladóknál szerezhetők be.
1.2.2 Kiszolgálók, asztali számítógépek és munkaállomások
Kiszolgálók
A kiszolgálók nagyteljesítményű számítógépek, melyeket vállalatoknál és más szervezeteknél használnak. A kiszolgálók sok végfelhasználó vagy ügyfél számára nyújtanak szolgáltatásokat.
A kiszolgálók hardverfelépítését egyidejűleg több hálózati kérésre adott kis válaszidőre optimalizálták. A kiszolgálók több Központi Feldolgozó Egységgel (CPU), nagy véletlen hozzáférésű memóriával (RAM) és több nagy kapacitású merevlemezes meghajtóval rendelkeznek, melyek gyors információ hozzáférést biztosítanak. 
A kiszolgálók által nyújtott szolgáltatások gyakran igen fontosak, és állandó rendelkezésre állást igényelnek. Ezért a kiszolgálók a kiesés megelőzésére gyakran tartalmaznak duplikált vagy redundáns elemeket. Automatikus és manuális biztonsági mentést is rendszeres időközönként végeznek. A kiszolgálókat általában biztonságos, ellenőrzött hozzáférésű helyen tárolják.
Kivitelezésük eltérő lehet: lehetnek önálló torony kialakításúak, állványra szerelhetők vagy blade (penge) rendszerűek. Mivel a kiszolgálókat általában tárolóegységként, nem napi használatú végfelhasználói berendezésként alkalmazzák, így nem szükséges, hogy saját monitorral vagy billentyűzettel rendelkezzenek, elég, ha ezeket más eszközökkel megosztják.
A kiszolgálók által leggyakrabban nyújtott szolgáltatások a fájltárolás, elektronikus levelek és web oldalak tárolása, nyomtatás megosztás és mások.
Asztali számítógépek
Az asztali számítógépek különböző adottságokkal bírnak. Gépházak, tápegységek, merevlemezek, videokártyák, monitorok és más összetevők széles választéka létezik. Az asztali számítógépek több különböző csatlakozóval és videó kimenettel rendelkezhetnek, valamint perifériák széles választékát támogatják.
Az asztali számítógépeket általában szövegszerkesztő, táblázatkezelő és hálózati alkalmazások, mint például elektronikus levelezés, web böngészés futtatására használják.
Létezik egy másik fajta számítógép is, mely hasonló az asztali számítógéphez, de sokkal nagyobb teljesítményű: a munkaállomás.
Munkaállomás
A munkaállomások nagyteljesítményű vállalati számítógépek. Specializált, magas színvonalú alkalmazásokra tervezték, mint például a CAD (Computer Aided Design - számítógéppel támogatott tervezés) mérnöki program. Munkaállomásokat használnak 3D grafikák, video animációk valamint virtuális valóság szimulációk készítése során. Távközlési vagy egészségügyi berendezések felügyeletére szintén használhatók a munkaállomások. Hasonlóan a kiszolgálókhoz, a munkaállomások jellemzően több CPU-t, nagy mennyiségű RAM-ot és több nagy kapacitású, gyors hozzáférésű merevlemezt tartalmaznak. Munkaállomások általában kiemelkedő grafikai teljesítménnyel és nagy vagy több monitorral rendelkeznek.
A kiszolgálók, asztali számítógépek és munkaállomások mind helyhez kötött eszközök. A laptopokkal ellentétben nem hordozhatóak.
1.2.3 Hordozható eszközök
A helyhez kötött számítógépek mellett számos hordozható elektronikus eszköz is létezik.
Ezek a hordozható eszközök, mind méretben, mind teljesítményben, valamint grafikai képességükben különböznek, és ide tartoznak:
Laptop vagy notebook PC Tablet PC Pocket PC
Digitális személyi asszisztens PDA


Játékeszköz
Mobiltelefonok
A laptopok, vagy más néven notebookok használhatóságukban és teljesítményükben hasonlóak az asztali számítógépekhez. Azonban kis súlyú és kis energiafelhasználású hordozható eszközök, melyek beépített egérrel, monitorral és billentyűzettel rendelkeznek. A laptopokat csatlakoztathatjuk dokkoló állomáshoz, mely segítségével a felhasználó nagyobb monitort, egeret és teljes méretű billentyűzetet használhat, valamint több kapcsolódási lehetőség közül választhat.
Ennek ellenére a laptopok általában korlátozottabb lehetőséggel rendelkeznek például a megjelenítési képességek és a csatlakozási típusok terén, és a bővítésük sem olyan egyszerű, mint az asztali számítógépek esetén.
Más hordozható eszközök, mint például a PDA-k vagy pocket PC-k, kisebb teljesítményű CPU-val és kevesebb RAM-mal rendelkeznek. Korlátozott kijelző funkcióval ellátott képernyőjük és kis billentyűzetük van.
A hordozható számítógépek legnagyobb előnye, hogy az információ és a szolgáltatások azonnal és szinte bárhonnan elérhetők. Például a mobil telefonok beépített címjegyzékkel rendelkeznek, melyben a kapcsolat neve és telefonszáma tárolható. A PDA-k beépített telefonnal, web böngészővel, elektronikus levelező programmal és más szoftverekkel is kaphatók.
Az egyes eszközök funkciói egyesíthetők egy multifunkcionális eszközben is. A multifunkcionális eszköz egyesíthet egy PDA-t, mobiltelefont, digitális kamerát és egy zene lejátszót. Internet hozzáférést és vezeték nélküli hálózatelérést biztosíthat, de a PDA-khoz hasonlóan korlátozott feldolgozási teljesítménnyel rendelkezik.
1.3 Az adatok bináris ábrázolása
1.3.1 Az információ digitális ábrázolása
A számítógépekben az adatok digitális, bináris formában találhatók. A bit a bináris számjegy (BInary digiT) rövidítése és egyben a legkisebb adategységet reprezentálja. Az emberek szavakat és képeket értelmeznek; a számítógépek csak bitmintákat tudnak feldolgozni.
Egy bit két értéket vehet fel: egyes számjegyet (1) vagy nullás számjegyet (0). Egy bit reprezentálhatja bárminek az állapotát, melynek két állapota létezik. Például a lámpakapcsoló vagy "Kikapcsolt" vagy "Bekapcsolt" állapotban lehet; binárisan ezek az állapotok megfeleltethetők az 1-nek és a 0-nak.
A számítógépek bináris kódokat használnak a betűk, számok és más speciális karakterek bitekkel történő ábrázolására. A leggyakrabban használt kód az ASCII (American Standard Code for Information Interchange). ASCII kódolás esetén minden karakternek egy bitsorozat felel meg. Például:
Nagybetű: A =01000001 Szám: 9 = 00111001 Speciális karakter: # = 00100011


A betűk és számok ábrázolásánál is használt 8 bitből álló csoportot bájtnak nevezzük.
Kódolást lehet használni szinte valamennyi információtípus (számítógépes adat, grafika, kép, hang, videó, zene) digitális formában történő ábrázolására.
1.3.2 Tárolókapacitás mérése
Bár a bit jelöli a legkisebb adategységet, az adattárolás legalapvetőbb egysége mégis a bájt. Egy bájt nyolc bitből áll és egyben a legkisebb mértékegységként használjuk a tárolókapacitás leírására.
Amikor a tároló méretére utalunk, általában a bájt (B), kilobájt (KB), megabájt (MB), gigabájt (GB) és terabájt (TB) mértékegységeket használjuk.
Egy kilobájt egy kicsivel több, mint ezer bájt, pontosan 1024 bájt. Egy megabájt több mint egy millió, pontosan 1,048,576 bájtot jelöl. Egy gigabájt 1,073,741,824 bájt és így tovább. A pontos értékek a kettő megfelelő hatványából adódnak. Példa: KB = 2A10; MB = 2A20; GB = 2A30.
Általánosan elmondható, hogy digitális ábrázolás esetén minél több a részlet annál több bit szükséges az adat reprezentálásához. Egy digitális kamerával felvett alacsony felbontású kép körülbelül 360KB, egy nagy felbontású kép akár 2 MB vagy több is lehet.
Kilobájtokat, megabájtokat, gigabájtokat és terabájtokat tipikusan egy eszköz tárolókapacitásának vagy méretének leírására használjuk. Példa eszközökre és alkotóelemekre melyek bájtokat tárolnak: véletlen hozzáférésű memória (RAM), merevlemezes meghajtó, CD-k, DVD-k és MP3 lejátszók.
1.3.3 A sebesség, felbontás és frekvencia mérése
A digitális információ egyik előnye, hogy nagyobb távolságon is közvetíthető a minőség romlása nélkül. A modem a bináris jelet az átviteli közegen átvihető formára alakítja.
Leggyakrabban használt átviteli közegek:
Kábelek, melyek elektromos impulzusokat használnak rézvezetékeken
Üvegszálas optika, mely a fény impulzusait használja üvegből vagy műanyagból készült üvegszálakon
Vezeték nélküli technológia, mely kis teljesítményű rádióhullámok impulzusait használja
Egy fájl méretének a leírására két mértékegységet használunk: biteket (b) és bájtokat (B). A távközlési mérnökök átvitt bitekben, míg a felhasználók inkább Byte-okban (kilobyte, megabyte) mért fájlméretben gondolkodnak. Egy bájt 8 bitet reprezentál.
Az átviteli sebesség megadja, hogy mennyi időre van szükség egy fájl letöltéséhez. Minél nagyobb egy fájl, annál több idő kell a letöltéséhez. Az átviteli sebesség mértékegysége az ezer bit/másodperc (kbps) vagy millió bit/másodperc (Mbps). Figyeld meg, hogy a kbps rövidítésben kis k betű szerepel nagy K helyett. Ennek az oka, hogy átviteli sebesség esetén gyakran kerekítünk lefelé. Valójában a kbps jelöli 1000 bit információ 1 másodperc alatti letöltését, míg a kbps az 1024 bit/másodperc átviteli sebességre utal. DSL vagy kábelmodem esetében az alkalmazott technológiától függően 512 kbps, 2 mbps vagy nagyobb sebességek érhetők el.


Letöltési idő
A számított letöltési idő egy elvi érték, amely függ a hálózati csatlakozástól, a számítógép processzorának sebességétől és egyéb paraméterektől. Egy fájl letöltéséhez szükséges idő becsléséhez a fájl méretét kell az átviteli sebességgel elosztani. Mennyi ideig tart például egy kis felbontású, 256 KB-os digitális fénykép letöltése egy 512 kbps-os hálózati kapcsolaton? Első lépésként váltsuk át a fájl méretét bitekre: 8 x 256 x 1024 = 2097152 bit. 256 KB-nak 2097 kb felel meg. Figyeld meg, hogy a 2097152-t kerekítettük ezresekre, így kis k betűt használtunk. A letöltési idő így 2097 kb osztva 512 kbps-al, ami hozzávetőleg 4 másodperc.
A tárolókapacitás és átviteli sebesség mellett számítógépek esetében egyéb mértékegységeket is használunk.
Számítógép képernyőjének felbontása
A grafikus felbontást pixelben adják meg. Egy pixel a képernyőn megjelenő egyetlen fénypont. A számítógép képernyőjének minőségét a függőlegesen és vízszintesen megjeleníthető pixelek száma adja meg. Egy szélesvásznú monitor például 1280 x 1024 pixelt és több millió színt képes megjeleníteni. Digitális kamera felbontását az egy képet alkotó megapixelek száma adja.
Analóg frekvenciák
A hertz a periódikus változások illetve frissülések gyorsaságának mértékegysége. 1 hertz másodpercenként egy periódust jelent. Számítógépek esetében a processzor sebességét hertz-ben mérjük, amely megadja a feladatok végrehajtási periódusainak sebességét. Egy 300 MHz-zel működő processzor például 300 millió periódust hajt végre másodpercenként. A vezeték nélküli átvitelt és a rádófrekvenciákat is hertz-ben mérjük.
1.4 A számítógép alkotóelemei és perifériái
1.4.1 Számítógép rendszer
Sokféle számítógép létezik. Mitől válik alkalmasabbá egy számítógép játékok vagy hangfájlok futtatására? A válasz: a számítógép alkatrészeitől és perifériáitól.
Egy elsősorban szövegszerkesztésre használt számítógép követelményei lényegesen eltérnek egy grafikus alkalmazásokat vagy játékokat futtató géphez képest. Mielőtt eldöntjük, milyen típusú és felszereltségű számítógépet vegyünk, fontos meghatároznunk, mire szeretnénk használni.
Sok gyártó sorozatban állít elő olyan számítógép rendszereket, amelyeket közvetlenül vagy kiskereskedelmi láncon keresztül értékesít. Ezeket a számítógépeket úgy tervezték, hogy alkalmasak legyenek több különböző típusú feladat elvégzésére is. Szintén sok forgalmazó kínál a felhasználók igényeit kielégítő, speciálisan összeállított számítógépet. Mindkettőnek megvannak az előnyei és hátrányai.


Előre összeállított számítógép
Előnyök:
Alacsonyabb költség
A legtöbb alkalmazás futtatására alkalmas
Összeszerelése nem igényel időt
Leginkább különleges igényekkel nem rendelkező, kevésbé képzett felhasználók számára hasznos
Hátrányok:
Gyakran hiányzik az a teljesítményszint, ami egyéni igények szerint összeállított számítógép esetén elérhető
Egyéni igények szerint összeállított számítógép
Előnyök:
A felhasználó határozhatja meg, milyen összetevőkre van szüksége
Általában nagyobb teljesítményt igénylő, mint pl. grafikai, játék és szerveralkalmazásokat támogat
Hátrányok:
Általában lényegesen költségesebb, mint egy előre összeállított számítógép
Összerakása időt igényel
A számítógép egyes alkotóelemei külön-külön is beszerezhetők és összerakhatók. Függetlenül attól, hogy milyen típusú rendszer mellett döntöttünk (előre vagy igény szerint összeállított) vagy magunk állítottuk össze, a számítógépnek a felhasználó igényeit kell teljesíteni. Néhány fontos szempont számítógép vásárlásakor: alaplap, processzor, RAM, tároló, illesztőkártyák paraméterei valamint gépház és áramellátási lehetőségek.
1.4.2 Alaplap, CPU és RAM
Az alaplap egy nagy nyomtatott áramkör, amely a számítógépet alkotó elektronikai elemeket és áramköröket köti össze. Az alaplap csatlakozókat tartalmaz, melyek lehetővé teszik a fő rendszerelemek, mint CPU és RAM csatlakoztatását. Az alaplap szállítja az adatokat a különböző csatlakozók és rendszerelemek között.
Az alaplapon lehetnek továbbá olyan csatlakozóaljzatok, amelyekhez hálózati, videó - és hangkártya illeszthető. Azonban ma már egyre több alaplapot úgy fejlesztenek, hogy ezeket a funkciókat integráltan tartalmazzák. A két megoldás közti különbséget a bővíthetőség adja. Csatlakozók használatakor a rendszerelemek könnyedén eltávolíthatók, és a technikai fejlődést követve cserélhetők vagy bővíthetők.
Egy beépített funkció bővítése vagy cseréje során maga a funkció nem távolítható el az alaplapról. Éppen ezért gyakran van szükség egy integrált funkció letiltására és egy csatlakozóba illesztett kártya használatára.


Alaplap választásakor a következőket kell figyelembe venni:
Támogassa a kiválasztott CPU típusát és sebességét.
Támogassa az alkalmazásokhoz szükséges rendszer RAM típusát és mennyiségét.
Megfelelő mennyiségű és típusú bővítőhellyel rendelkezzen az összes szükséges interfészkártya csatlakoztatásához.
Elegendő és megfelelő típusú interfésszel legyen ellátva.
Központi feldolgozó egység (CPU)
A CPU vagy processzor a számítógép központi idegrendszere. Ez az alkotóelem dolgozza fel az adatokat a számítógépen belül. Számítógép rendszer létrehozásának vagy frissítésének első lépése a CPU típusának kiválasztása. Ennek fontos szempontjai, a processzor és a busz sebessége.
Processzor sebesség
A processzor sebessége az információ feldolgozásának sebessége. Ezt általában MHz-ben vagy GHz- ben mérjük. Minél nagyobb a sebesség, annál nagyobb a teljesítmény. Egy gyorsabb processzor több energiát fogyaszt, és több hőt termel. Éppen ezért a mobil eszközök, mint pl. egy laptop, lassabb processzort és így kevesebb energiát használnak annak érdekében, hogy minél hosszabb ideig működjenek akkumulátor használatával.
Busz sebesség
A CPU az alaplapon található különböző típusú memóriák között irányítja az adatokat. Az adatok ilyen áramlásának útját hívjuk busznak. Általában minél gyorsabb a busz, annál gyorsabb a számítógép is.
A CPU kiválasztásakor vegyük figyelembe az alkalmazások folyamatos fejlődését. Egy átlagos sebességű CPU vásárlásával a pillanatnyi követelményeket elégíthetjük ki. A jövőben viszont bonyolultabb, például nagy felbontást igénylő alkalmazásoknál, egy nem megfelelő sebességű CPU a számítógép egész teljesítményét lerontja, ami a válaszidő megnövekedésével jár.
A CPU az alaplap egyik csatlakozójába illeszkedik és általában az alaplaphoz csatlakozó legnagyobb méretű alkatrész. Az alaplapnak a kiválasztott processzorral kompatibilis csatlakozóval kell rendelkeznie.
RAM
A RAM a számítógépeknél használt adattárolók egy típusa. A RAM-ot a CPU által feldolgozás alatt lévő programok és adatok tárolására használják. A adatok elérése történhet a tárolási sorrendnek megfelően vagy véletlenszerűen is. Minden számítógépes program a RAM-ból fut. A CPU után a RAM mennyisége befolyásolja leginkább a számítógép teljesítményét.
Minden operációs rendszer igényel a futtatásához egy minimális mennyiségű RAM-ot. A legtöbb számítógép képes egyszerre több alkalmazás futtatására, illetve több feladat egyidejű elvégzésére. Sok felhasználó egyidejűleg használ például levelező programot, azonnali üzenetküldő alkalmazást, vírus elleni eszközöket vagy tűzfalat. Ezek az alkalmazások mind memóriát igényelnek. Minél több a párhuzamosan futó program, annál több memóriára van szükség.
CISCO
A többprocesszoros számítógéprendszerek is nagyobb memóriaigénnyel rendelkeznek. Ezenfelül a CPU és a busz sebességének növekedését a memória sebességének is követnie kell. A számítógépbe telepíthető RAM típusát és mennyiségét az alaplap határozza meg.
1.4.3 Illesztőkártyák
Az illesztőkártyák a számítógép szélesebb körű felhasználási lehetőségét biztosítják. Tervezésüknek köszönhetően a számítógép alaplapjának csatlakozójába vagy aljzatába illesztve a rendszer részévé válnak. Sok alaplap úgy van tervezve, hogy ezeknek az illesztőkártyáknak a feladatát integráltan magában foglalja, így nincs szükség az egyes kártyák beszerzésére és telepítésére. Míg ezek az alaplapok az alapvető funkciókat látják el, addig egyedi kártyák használatával nagyobb teljesítményszint érhető el.
Néhány gyakran használt illesztőkártya:
Videokártyák
Hangkártyák
Hálózati kártyák
Modemek
Interfészkártyák
Vezérlőkártyák
1.4 4 Tárolóeszközök
A tápellátás megszűnésével a RAM tartalma elvész. A programokat és felhasználói adatokat olyan helyen kell tárolni, ahol akkor sem vesznek el, ha a tápellátás megszűnik. Ezt hívjuk nem felejtő tárolónak. Különböző típusú nem felejtő tárolók léteznek, úgy mint:
Mágneses tároló eszközök
Optikai tároló eszközök
Statikus memória (flash) meghajtók
Mágneses tároló
A mágneses tárolók az adatok tárolására leggyakrabban használt eszközök. Ezek az eszközök mágneses mező segítségével tárolják az információt. Ilyenek például:
Merevlemez meghajtók
Hajlékonylemez meghajtók
Szalagos meghajtók
Optikai meghajtók
Az optikai tároló eszközök lézersugár segítségével az optikai sűrűség változtatásával rögzítik az információt. Ilyen eszközök a CD-k és DVD-k, melyeknek három típusát különböztetjük meg:
Csak olvasható: CD, DVD
Egyszer írható:CD-R, DVD-R
Többször írható: CD-RW, DVD-RW


Ezeknek az eszközöknek az ára folyamatosan csökken, és ma már a legtöbb számítógép DVD-RW meghajtóval kapható, melyhez tartozó egyoldalas lemez kapacitása 4.7 GB.
A DVD meghajtók egy másik formája az úgynevezett Blu-ray. Az adatok olvasásához és írásához másfajta lézert használ. Az információ tároláshoz használt lézer színe ibolyakék. Ennek köszönhetően hívják Blu-ray lemeznek, megkülönböztetve így a hagyományos DVD-től, mely piros lézerfényt használ. A Blu-ray lemezek tárolókapacitása 25 GB vagy annál nagyobb.
Statikus memória és memória modulok
A statikus memória eszközök memóriachipen tárolják az információt. Az itt tárolt információk a gép kikapcsolása után is megmaradnak. A számítógép egy USB portjához csatlakoznak és 128 vagy még több MB tárolására képesek. Méretükből és alakjukból adódóan ezek az eszközök USB memória vagy Flash memóriaként ismertek és fájlok hordozásánál széleskörűen helyettesítik a floppy lemezeket. Sok hordozható eszköz és kézi készülék adattárolásra teljes egészében statikus memóriát használ.
Tároló kapacitás vásárlásakor általánosan elfogadott gyakorlat a mágneses és az optikai memóriák keverése, akár statikus memóriával is. Amikor a tárolókapcitás nagyságáról döntünk, a becsült igényhez képest további 20%-os többlettel kell számolni a későbbi igények miatt.
1.4.5 Perifériák
A periféria egy számítógéphez csatlakoztatott eszköz, mely kiterjeszti annak képességeit. Mivel ezek az eszközök nem szükségesek az alapfunkciók ellátásához, ezért alkalmazásuk nem kötelező, ugyanakkor jelentősen növelhetik a számítógép használhatóságát. A perifériák kívülről csatlakoznak a számítógéphez, speciális kábelt vagy vezeték nélküli technológiát használva.
A perifériák négy csoportba sorolhatók: bemeneti, kimeneti, tároló és hálózati eszközök. Közismert perifériák a következők:
Bemeneti eszközök: trackball, botkormány, lapolvasó, digitális fényképezőgép, digitalizáló, vonalkód olvasó, mikrofon
Kimeneti eszközök: nyomtató, rajzgép, hangszórók, fejhallgatók
Tároló eszközök: másodlagos tároló, külső CD/DVD készülékek, flash memóriák
Hálózati eszközök: külső modemek, külső hálózati kártya (NIC)
1.4.6 Számítógépházak és tápegységek
A számítógépház és tápegység
A belső tartozékok és a csatlakozók után a számítógépház a következő összetevő amit megvizsgálunk. A számítógépházak egy részét az asztal tetején, míg másik részét az asztal alatt történő elhelyezésre tervezik. Az asztalra tervezett számítógépek könnyű hozzáférést biztosítanak az interfészekhez és meghajtókhoz, azonban értékes asztalterületet igényelnek. A torony és mini torony házak elhelyezhetők az asztal alatt és fölött egyaránt. Típustól függetlenül a számítógépház kiválasztásánál az a legfontosabb szempont, hogy elegendő helyet biztosítsanak a beépítendő komponensek számára.


A számítógépház és a tápegység általában együtt kapható. A tápegységnek elegendő teljesítményűnek kell lennie, hogy mind a rendszert, mind az esetlegesen később csatlakoztatott eszközöket elegendő elektromos energiával lássa el.
A számítógép folyamatos áramellátást igényel. Az áramszolgáltatók által biztosított elektromos áramellátásban feszültségcsökkenés vagy áramkimaradás is jelentkezhet. A rossz áramellátás befolyásolhatja a számítógép hardverelemeinek teljesítményét, és a károsodásukat is okozhatja. További következményként a számítógépen tárolt szoftverek és adatok is megsérülhetnek.
A számítógépet az áramellátással kapcsolatos problémákkal szemben többféle eszközzel is védhetjük. Ilyen készülék például a túlfeszültségvédő és a szünetmentes tápegység (uninterruptible power supplies, USP).
Túlfeszültségvédő
A túlfeszültségvédők a feszültségtüskéket és a túlfeszültséget elvezetik az elektromos vezetékről, ezzel megelőzve a gép károsodását. Viszonylag olcsók, és könnyen üzembehelyezhetők.
Általában a túlfeszültségvédőt az elektromos fali aljzatba, a számítógépet pedig a túlfeszültségvédőbe kell csatlakoztatni. Számos túlfeszültségvédőhöz telefonvezeték is csatlakoztatható, hogy megvédje a modemet a telefonvonalon érkező túlfeszültségtől.
Szünetmentes tápegység
Az UPS olyan eszköz, melyben egy beépített akkumulátor segítségével a rendszer áramellátása folyamatosan nyomon követhető és fenntartható. Ha az áramellátás megszakad, az UPS szolgál tartalék árammal a számítógép szünetmentes működéséhez. A tartalék áramot a UPS-ben elhelyezett akkumulátor adja, és csak rövid ideig használható. Az UPS-t úgy tervezték, hogy a felhasználónak elegendő ideje legyen a számítógép megfelelő kikapcsolásához áramszünet esetén. Az UPS további előnye, hogy egyenletes áramellátást biztosít, és megelőzi a túlfeszültség okozta károkat.
Az otthonok és kisebb vállalatok számára tervezett UPS-ek viszonylag olcsók, emellett gyakran magukba foglalják a túlfeszültségvédőt és az áramellátás stabilitását biztosító egyéb eszközöket. A számítógépek UPS-el való védelme erősen ajánlott a gép helyétől és felhasználási területétől függetlenül.
1.5 A számítógépes rendszer összetevői
1.5.1 Biztonsági előírások és gyakorlati tanácsok
A számítógép bonyolult alkatrészek és perifériák együttese, amelyek közös munkával látnak el bizonyos feladatokat. Meghibásodás miatt, vagy a rendszer teljesítőképességének növelése érdekében egyes alkatrészek időnként cserére szorulhatnak. Ehhez gyakran a számítógépház felnyitására, és a házon belül történő szerelésre van szükség.
Az ilyen munka során fontos a biztonsági óvintézkedések betartása, hogy megelőzzük a rendszer komponenseinek rongálódását, vagy a szakember sérülését. Mielőtt a gépházat felnyitjuk, győződjünk meg róla, hogy a számítógépet kikapcsoltuk és áramtalanítottuk!


A számítógép és a monitor szállítását esetlegesen nagy súlyuk miatt óvatosan kell végezni! A számítógép felnyitása előtt biztosítani kell a megfelelő munkaterületet. A munkaterület legyen tiszta és sík felület, és elég erős ahhoz, hogy elbírja a súlyosabb berendezéseket. Legyen zsúfoltságtól és rendetlenségtől mentes, valamint a szem megerőltetésének elkerülése végett jól megvilágított!
A szemet megfelelően kell védeni a szennyeződésektől, kisebb csavaroktól és az egyéb alkatrészektől, melyek sérülést okozhatnak. A gépház felnyitásánál az éles peremek érintését el kell kerülni!
A tápegységek és képernyők veszélyesen magas feszültséggel működnek, ezért kizárólag képzett szakemberek nyithatják fel.
Egyes számítógépek esetén a komponenseket üzem közbeni cserére is alkalmassá tették, ami a gép kikapcsolása nélkül teszi lehetővé az összetevők csatlakoztatását, illetve eltávolítását. (Angolul az ilyen alkatrészeket hot-swappable eszközöknek, magát a technológiát hot-swapping-nek nevezik.) Ennek a tulajdonságnak köszönhetően a gép működés közben szerelhető és fejleszthető. A technológiát elsősorban nagyteljesítményű kiszolgálóknál alkalmazzák.
Hacsak nem biztos benne, hogy a rendszer „hot-swappable" mindig kapcsolja ki a gépet, mielőtt felnyitná a számítógépházat, vagy eltávolítana egy alkatrészt! Egy „hot-swapping" tulajdonsággal nem rendelkező számítógép működés közben történő szerelése komoly és maradandó sérülést okozhat a rendszernek vagy a szerelést végző szakembernek.
A belső rendszerkomponensek különösen érzékenyek a statikus elektromossággal szemben. Az elektrosztatikus kisülés (Electrostatic Discharge) ESD statikus elektromosság, ami a testről a gép elektromos alkatrészeire tevődhet át. A statikus elektromosság nem feltétlenül érezhető.
Az ESD végzetes hibákat okozhat az alkatrészekben, működésképtelenné téve azokat. Az ESD következtében kontakthiba is keletkezhet, aminek felderítése meglehetősen nehéz. A felsorolt okokból kifolyólag a megfelelő földelés elsődleges követelmény. A szakemberek egy speciális földelő csuklópántot használnak, hogy testük és a számítógép háza között összeköttetést létesítsenek. A földelés biztosítja a szakember és a rendszer azonos feszültségszintjét, megelőzve ezzel az ESD-t.
Sosem szabad túlzott erővel beszerelni egy komponenst! A túlzott erőltetés megsértheti az alaplapot és a beszerelendő összetevőket is, aminek következtében a rendszer nem fog megfelelően működni. A károsodás nem mindig látható. Az erőltetés a csatlakozóban is kárt tehet, ami később a hozzá csatlakoztatott új komponenseket is tönkreteheti.
Annak érdekében, hogy bizonyosak lehessünk az összes előírás betartásában, ajánlott egy ellenőrző lista készítése, aminek alapján a munkafolyamat elvégezhető.
Használj antisztatikus alátétet és földelő csuklópántot.
A számítógép összetevőinek tárolására és mozgatására használj antisztatikus tasakokat. A tasakba egynél több összetevőt ne tegyél, mivel azok feltornyozása egyes összetevők törését vagy kilazulását okozhatja.
A gép bekapcsolt állapotában ne helyezz a számítógépbe összetevőt vagy ne távolítsd el onnan.
Gyakran földeld magad a ház vagy tápegység csupasz fémdarabjának megérintésével. Ez megakadályozza a sztatikus feltöltődést.


Csupasz aljzaton állva dolgozzál, mivel a szőnyegborítás sztatikusan feltöltődhet
A kártyákat az élüknél fogd meg kerülve a mikrochipek vagy a bővítőkártya csatlakozóélének a megérintését.
Ne érintsd meg a mikrochipeket vagy a bővítőkártyákat mágneses végű csavarhúzóval.
Kapcsold ki a számítógépet annak mozgatása előtt. Ez a merevlemez védelmét szolgálja, mely a számítógép bekapcsolt állapotában mindig forog.
A telepítő/karbantartó CD-ket, lemezeket óvd a mágneses erőtértől, hősugárzástól és a hideg hőmérséklettől.
Semmilyen áramköri lapot ne helyezz vezető felületre, különösen fémfóliára. Az alaplapon használt lítium és nikkel-kadmium (Ni-Cad) elemekben rövidzár keletkezhet.
A kétlábsoros (DIP) kapcsolók átváltásához ne használj ceruzát vagy fém végű eszközt illetve ne érintsd meg velük az összetevőket. A ceruzában található grafit vezető, így könnyen károsodást okozhat.
Ne hagyd hogy bárki, aki nem megfelelően földelt, a számítógép összetevőit megérintse vagy kézzel eltávolítsa azokat. Ez érvényes a laboratóriumban veled együtt dolgozó társadra is. Az öszetevők továbbadásakor az átvevő kezét mindig érintsd meg először az esetleges töltés semlegesítése céljából.
1.5.2 Az összetevők beszerelése és működésük ellenőrzése
A legtöbb összetevőnél az alábbi lépéseket kell elvégezni:
1. Vizsgálja meg, vajon a gép képes-e "hot-swappable" szerelésre? Ha ez nem biztos, a gépház felnyitása előtt a gépet áramtalanítani kell!
2. A földelő csuklópánttal kösse össze a testét a gép keretével vagy vázával, így megelőzhetőek az olyan károsodások, melyeket ESD okoz.
3. Ha kicserél egy alkatrészt, távolítsa el a régit. Az alkatrészek gyakran a vázhoz vannak rögzítve kisméretű csavarokkal vagy csiptetőkkel. Amikor a csavarokat eltávolítjuk, ne engedjük azokat az alaplapra esni! Figyeljünk arra is, hogy ne törjük le a műanyag csiptetőket.
4. Ellenőrizze az új komponens csatlakozójának típusát. Minden kártyát csak a megfelelő típusú csatlakozóval lehet a rendszerbe illeszteni, és nem szabad sem a beillesztésnél, sem a kivételnél erőltetni.
5. Helyezze az új alkatrészt a megfelelő helyre a megfelelő irányban és gondosan végezze el az üzembe helyezéssel járó utasításokat.
Kövesse a biztonsági előírásokat lépésről lépésre.
Az új vagy csereként szolgáló alkatrész beépítése után zárja le a gépházat, és csatlakoztassa újra a táp- és egyéb kábeleket. Kapcsolja be a rendszert, és figyelmesen olvassa el a képernyőn esetlegesen megjelenő üzeneteket! Ha a rendszer nem indul, ismét húzza ki a kábeleket, és ellenőrizze, hogy az alkatrész megfelelően van-e csatlakoztatva! Ha a rendszer továbbra sem indul az új összetevővel, távolítsa el, és próbálja elindítani a számítógépet. Ha az új összetevő nélkül elindul a rendszer, előfordulhat, hogy a komponens nem kompatibilis az aktuális hardverrel vagy szoftverrel és a probléma alaposabb vizsgálatot igényel.


Bizonyos alkatrészek működéséhez további speciális szoftverre vagy illesztőprogramra is szükség lehet. A leggyakrabban használt összetevők illesztőprogramját általában az operációs rendszer tartalmazza, de más speciális komponensek esetében az illesztőprogramot külön kell hozzáadni. Az újabb operációs rendszerek általában figyelmeztetnek, ha további illesztőprogram hozzáadására van szükség.
Az illesztőprogramokat folyamatosan fejlesztik a hatékonyság és a használhatóság növelése érdekében. A legfrissebb illesztőprogram elérhető a gyártó cég honlapjáról és normális esetben ezt kell használni. Az illesztőprogramhoz mellékelt dokumentációt a lehetséges problémákról és a megfelelő üzembe helyezésről minden esetben végig kell olvasni!
Telepítés után a tesztelni kell az alkatrész teljes funkcionalitását.
Az alkatrészeket úgy tervezték, hogy a rendszererőforrások egy meghatározott részét használják. Ha két komponens egyszerre próbálja használni ugyanazt az erőforrást, egyik vagy mindkettő működésképtelenné válhat. Megoldást nyújthat az egyik eszköz által használt erőforrás cseréje. Az újabb alkatrészek és operációs rendszerek dinamikusan foglalják le a rendszer erőforrásait.
Ha az eszköz nem működik megfelelően, ellenőrizni kell, hogy a megfelelő és a legújabb illesztőprogramot használjuk-e. Szintén meg kell vizsgálni, hogy az operációs rendszer felismerte-e, és helyesen azonosította-e az eszközt. Ha a probléma továbbra is fennáll, ki kell kapcsolni a rendszert, ki kell venni, és körültekintően újra behelyezni a komponenst, majd ellenőrizni a csatlakozásokat. A megfelelő beállítások érdekében az eszköz leírását is át kell olvasni. Ha az eszköz továbbra sem működik, előfordulhat, hogy az eszköz gyári hibás, és vissza kell vinni az eladóhoz.
1.5.3 Perifériák beszerelése és működésük ellenőrzése
Ellentétben a belső komponensekkel, a perifériák beszerelése nem igényli a számítógépház felnyitását. A perifériák vezetékes vagy vezeték nélküli kapcsolattal csatlakoznak a rendszerhez, a számítógépház külsején található interfészeken keresztül. A hagyományos perifériákat egy meghatározott típusú csatlakozón keresztül lehetett a rendszerhez kapcsolni. A személyi számítógépek nyomtatóinál például az adat a párhuzamos porton keresztül jutott a gépről a nyomtatóra.
A közelmúltban kifejlesztett univerzális soros busz (Universal Serial Bus, USB) csatlakozó lényegesen egyszerűsíti a kábellel működő perifériás eszközök csatlakoztatását. Az USB eszközök nem igényelnek bonyolult konfigurálást, csupán csatlakoztatni kell őket a megfelelő interfészhez, feltételezve, hogy a megfelelő illesztőprogram telepítve van. Tovább növekszik azon perifériák száma, melyek vezeték nélküli technológia segítségével csatlakoznak az állomáshoz.
Egy periféria üzembe helyezése több lépésben történik. Ezen lépések sorrendje és mikéntje a fizikai kapcsolattól és az eszköz Plug-and-Play (PnP) képességétől függ. A lépések a következők:
Csatlakoztassa a perifériát az állomáshoz a megfelelő kábellel vagy vezeték nélküli technológiával!
Csatlakoztassa a perifériát az áramforráshoz!
Telepítse a megfelelő illesztőprogramot!


Némely régebbi, hagyományos (legacy) eszközként emlegetett periféria nem PnP-képes, ezért ezeknél a csatlakoztatás és bekapcsolás után telepíteni kell az illesztőprogramot.
A PnP USB eszközök esetén az illesztőprogramokat az operációs rendszer előtelepített formában tartalmazza. Ebben az esetben a PnP eszköz csatlakoztatása és bekapcsolása után, az operációs rendszer felismeri az eszközt, és telepíti a megfelelő illesztőprogramot.
Elavult vagy rossz illesztőprogram telepítése előre nem látható hibákhoz vezethet, ezért mindig az elérhető legfrissebb illesztőprogramot kell telepíteni.
Ha a periféria a csatlakoztatás és telepítés után nem működik, ellenőrizni kell a kábeleket és azt, hogy az eszköz be van-e kapcsolva.
Számos eszköz (például a nyomtatók jelentős része) számítógépes kapcsolatot nem igénylő öntesztelési funkcióval rendelkezik. Ezzel a lehetőséggel ellenőrizhető, hogy az eszköz megfelelően működik-e magában. Ha az önteszt hibátlanul lefut, akkor a hiba a kábeles kapcsolatban lehet.
A gyanús kábelt ki kell cserélni egy jó kábelre! Ha a probléma továbbra is fennáll, a következő lépésben ellenőrizni kell, vajon az operációs rendszer felismerte-e az eszköz által használni kívánt portot.
Ha látszólag minden megfelelően működik, előfordulhat, hogy az eszköz nem kompatibilis a jelenlegi hardverrel vagy operációs rendszerrel, és a probléma megoldása további lépéseket igényel.
Miután végeztünk a telepítéssel, a periféria teljes funkcionalitását tesztelni kell. Részleges működés esetén, leggyakrabban az elavult vezérlőprogram okozza a problémát. Ez könnyen orvosolható, ha a gyártó cég honlapjáról letöltjük és telepítjük a legfrissebb verziót.

Nincsenek megjegyzések:

Megjegyzés küldése