2019. szeptember 4., szerda

A kvantummechanika titkai

Paradigmaváltások tucatjaira volt szükség a kvantumszámítógépek előállítására. A nem mérhető folyamatokat át kell alakítani metrikussá, hogy a számítógép értékelhesse. A jelfeldolgozás a digitális számítógépek elterjedésével nagyságrendekkel felgyorsult, és lehetővé vált a valós idejű és online kiértékelés, vezérlés és irányítás. A folyamatokat jellemző jelek általában nem alkalmasak digitális számítógépen történő feldolgozásra. A folyamatok többségét jellemző analóg folytonos jelek digitális jellé történő átalakítása kvantálással történik. Jó példa erre, a bakelit lemez hangjának digitalizálása Sunforge programmal.
Neumann János 1927-1928-ban Göttingenben David Hilbert mellett a funkcionálanalízis terén végzett kutatásokat, míg Wigner Jenő Hilbert asszisztenseként  az atomok spektrumának értelmezésére a csoportelmélet módszereit kutatta. Együtt publikáltak Neumann Jánossal, akivel a csoportelméleti módszert kiterjesztették az elektronspinre is. A kvantummechanika a fizika azon ága, amelyik a nanoszkopikus méreteknél történő jelenségeket vizsgálja; így az elemi részecskék viselkedését vagy például az olyan alacsony hőmérsékletű makrojelenségeket, mint a szuperfolyékonyság és a szupravezetés.
A név abból a megfigyelésből származik, hogy bizonyos fizikai tulajdonságok egységi mennyiségenként (latin: kvantum), nem pedig folyamatos (analóg) módon változnak. A kvantummechanika alapvetően négy jelenségre szolgáltat magyarázatot, amikre a klasszikus mechanika és a klasszikus elektrodinamika nem:    kvantálás,    a hullám-részecske kettősség,    a határozatlansági reláció és    a kvantum-összefonódás. A kvantumfizika és kvantumelmélet kifejezéseket gyakran a kvantummechanika szinonimájaként használjuk, máskor viszont bővebben beleértjük a kvantummechanika előtti régebbi kvantumelméleteket is, vagy amikor a kvantummechanikát egy sokkal szűkebb értelemben használjuk (a klasszikus mechanika mintájára), akkor beleértjük az olyan elméleteket például, mint a kvantumtérelmélet vagy annak első kidolgozott változatát, a kvantum-elektrodinamikát.
A kvantummechanika egy rendszer pillanatnyi állapotát a hullámfüggvénnyel ábrázolja, ami a mérhető tulajdonságok – másképpen megfigyelhető mennyiségek – valószínűségi eloszlását írja le. Megfigyelhető mennyiség például az energia, térbeli helyzet (a nem relativisztikus elméletben), impulzus, impulzusmomentum stb. Neumann János, aki a Hilbert-tér (ez az elnevezés is tőle származik) operátorainak spektrálelméletével foglalkozott, azonnal észrevette, hogy a matematikának ez a fejezete kiválóan megfelel arra a célra, hogy a kvantummechanikát korrekt és szigorú matematikai alapokra helyezze. 1927-1929 folyamán több fontos cikket jelentetett meg a kvantummechanika matematikai alapjairól
 A kvantummechanika általában nem rendel határozott értékeket a megfigyelhető mennyiségekhez, hanem becsléseket ad a valószínűségi eloszlásukra. Egyes eloszlások csak diszkrét értékeit engedik meg a megfigyelhető mennyiségeknek, az ilyen mennyiségeket kvantáltnak nevezzük. A hullámfüggvény az időben fejlődhet. Például az üres térben mozgó részecske ábrázolható egy átlagos helyzet körül el nem tűnő hullámcsomaggal. Az idő múlásával ez az átlagos pozíció eltolódhat a térben, ahogy a hullámcsomag változik, és a részecskét nagy valószínűséggel máshol fogjuk megtalálni, mint annak előtte. Másrészt vannak olyan hullámfüggvények, amelyekhez időben állandó valószínűség-eloszlás tartozik. Sok rendszer, amit a klasszikus fizika dinamikusan ír le, a kvantummechanikában ilyen statikus hullámfüggvénnyel írható le. Például a klasszikus kép szerint a nem gerjesztett atomban az elektron kering az atommag körül, míg a kvantummechanikában az elektront egy középpontos szimmetriával rendelkező valószínűségi függvény („elektronfelhő”) írja le.
Egy megfigyelhető mennyiség tényleges megmérése megváltoztatja a rendszert és a hullámfüggvényét. Közvetlenül a mérés után a hullámfüggvény teljesen kompatibilis a méréssel, azaz olyan, amelyik 100% valószínűséget ad az éppen kapott eredményre. Ez a jelenség a hullámfüggvény összeomlása. Egy adott hullámfüggvénybe való összeomlás valószínűsége függ a mérés típusától és kiszámolható a mérés előtti hullámfüggvényből. Nézzük az üres térben mozgó részecske fenti példáját. Ha megmérjük a részecske helyzetét, véletlenszerű eredményt kapunk. Általában lehetetlen megjósolni a kapott x értéket, bár valószínű, hogy a hullámcsomag centrumához – ahol a hullámfüggvény amplitúdója nagy – közeli értéket kapunk. Közvetlenül a mérés után a hullámfüggvény egy olyan hullámfüggvénybe omlik össze, ami élesen a mért x érték körül összpontosul. A részecske sebességének a mérése egy teljesen más hullámfüggvényhez vezetne. Neumann János a mátrixmechanika dinamikai egyenleteit bizonyos szempontból az integrálegyenletekkel állította analógiába, amelyek elmélete Fredholm kutatásainak köszönhetően már igen magas fejlettségi szintet ért el. Ennek megfelelően kutatásaiban kiterjedten alkalmazta a funkcionálegyenletek, például integrálegyenletek elméletének módszereit.
Érdekes módon Neumann János e felismerését igazolja a modern kvantum-szóráselmélet, amelyben az integrálegyenletek elméletének matematikai apparátusa kiemelkedően fontos szerephez jut. A hullámfüggvény időfejlődése determinisztikus abban az értelemben, hogy adott időben, adott hullámfüggvényből kiindulva határozott becslést kapunk arra, hogy bármely későbbi időben milyen lesz a hullámfüggvény. Nem relativisztikus esetben ezt a folytonos időfüggést írja le a Schrödinger-egyenlet, amit relativisztikus esetben a Dirac-egyenlettel kell helyettesítenünk. Mérés közben a hullámfüggvény változása viszont valószínűségi, nem determinisztikus. A kvantummechanika valószínűségi jellege tehát a mérés folyamatában rejlik. Mint a bevezetés is említi, több olyan jelenség van a kvantummechanikában, aminek nincs klasszikus megfelelője. Ezeket gyakran kvantumeffektusoknak hívjuk. Az egyik kvantumeffektus bizonyos mennyiségek kvantálása. Láttuk, hogy bizonyos megfigyelhető mennyiségek a kvantummechanikában diszkrét értékeket vesznek fel, mint például az impulzusmomentum, vagy egy kötött állapot energiája vagy adott frekvenciájú elektromágneses sugárzás energiája, bár nem minden kvantummechanikában előforduló mennyiség kvantált.
Egy másik kvantumeffektus a határozatlansági reláció. Bizonyos mennyiségpárok egyidejű (szimultán) mérése elvi hibahatáron kívül lehetséges csak. Ilyen pár például egy részecske helyzete és impulzusa. Hasonló reláció érvényes az energiára és az időre is olyan értelemben, hogy két egymást követő energiamérés hibája nő, ha a két mérés közötti idő csökken. Az ilyen mennyiségpárok a klasszikus fizikában egymás kanonikus konjugáltjai.
A Kétrés-kísérlet során kialakuló interferenciakép 8, 270, 2000 és 60000 egyedülálló elektron esetén, ami az elektron hullámtulajdonságát mutatja.  Egy másik kvantumeffektus a hullám-részecske kettősség. Erre példa az, hogy bizonyos kísérleti körülmények között az elektronok részecskeszerű (például szórás), mások között hullámszerű (például interferencia) viselkedést tanúsítanak. Egy másik kvantumeffektus a kvantum-korreláció, vagy más néven kvantum-összefonódás.
Bizonyos esetekben egy összetett rendszer hullámfüggvénye nem szeparálható az elemek független hullámfüggvényeire. Az így összefonódott részecskék klasszikus szempontból rendkívül furcsa viselkedést mutathatnak. Például az egymástól egyébként távoli részecskéken végzett helyi mérések eredményeinek korrelációi a megszokott klasszikus statisztikákkal nem egyeztethetők össze. Az ilyen jelenséget felmutató kísérletek a kvantummechanika legmélyebb bizonyítékai, ilyen az alagúteffektus is. alagúteffektus Kvantummechanikai folyamat, amelynek során az elemi részecskék bizonyos valószínűséggel olyan akadályokon is átjuthatnak, amelyeken a klasszikus mechanika törvényei szerint biztosan nem hatolnának át.
A jelenség az anyagi részecskék hullámtulajdonságával magyarázható.
Az alfa-bomlás, az alagút-elektronmikroszkóp működése és a Josephson-átmenet is az alagúteffektussal magyarázható. Ahogy nagyapám mondaná, amikor már magyarázkodni kell, akkor régen vége.  A klasszikus fizika szerint pl. egy golyó nem hatolhat át egy vékony, de áttörhetetlen falon. A kvantummechanika szerint a falhoz érkező részecske, nagyon kis valószínűséggel, de átjuthat a fal túloldalára is. Ez azt jelenti, hogy az esetek csekély számában a részecske megjelenhet a falon túl, anélkül, hogy a falat akár megmászta, akár áttörte volna. Az egydimenziós dobozba zárt elektron tárgyalásakor feltételeztük, hogy a dobozt végtelen magas „potenciálfal” határolja. A magánvéleményem, hogy ha egy tudomány sok axiómára épül az lehet csak hókuszpókusz. Ekkor az elektron megtalálási valószínűsége az adott 0 < x < L tartományon kívül zérus, s az elektront a doboz belsejében állóhullám reprezentálja. Az állóhullám képhez úgy is eljuthatunk, hogy a mechanikai, illetve fényhullámok analógiájára feltételezzük, hogy az elektronhullám a doboz falának ütközve visszaverődik, és önmagával interferálva alakítja ki az időben stabilisan fennmaradó állóhullámot.
A fényről azonban tudjuk, hogy új közeg határára érve csak részben verődik vissza, s a hullám bizonyos mértekben mindig behatol az új közegbe is. Ez csekély mértékben még teljes visszaverődés esetén is bekövetkezik. A részletes kvantummechanikai számítások azt mutatják, hogy amennyiben a bezárt részecske mozgását csak véges magasságú és szélességű potenciálgát korlátozza, akkor az anyaghullámok véges valószínűséggel olyan potenciálgátakkal határolt területre is behatolhatnak, amelyek magassága jóval nagyobb a részecske összenergiájánál, s amennyiben a gát keskeny, akkor a hullám át is hatolhat rajta. A hétköznapi tapasztalataink szerint ezt a különösnek tűnő jelenséget alagúteffektusnak nevezzük. Az elnevezés onnan ered, hogy a klasszikus mechanikában egy test nem juthat át az előtte tornyosuló hegy (potenciálgát) túloldalára, ha nincs elegendő energiája a hegy megmászására,[1] csak ha a hegybe fúrva alagutat talál. Ez a viselkedés a klasszikus fizika szabályai szerint teljesen lehetetlen. Amennyiben hasonló mozgás makroszkopikus körülmények között is végbemenne, akkor az azt jelentené, hogy a hegyoldalon felfelé gurított golyó estenként akkor is átkerülne a szomszédos völgybe, ha a mozgási energiája a hegy lábánál kisebb, mint a hegytetején a helyzeti energia.
Az áthatolás azonban nem mindig következne be, hanem csak véletlenszerűen, s a hegy magasságának és szélességének növekedtével egyre ritkábban. Továbbá növelné az ilyen ritka események furcsaságát az, hogy a szomszéd völgyből a hegyen átjutó golyót sohasem a hegy tetején. Ilyenkor úgy képzelhetjük, mintha a potenciálgáton áthaladó részecske nem a gátat megmászva, hanem egy alagúton keresztül került volna át az akadályon. Az alagútjelenség jellegzetesen kvantummechanikai természetét a határozatlansági reláció segítségével érthetjük meg pontosabban.  Az alagúteffektus hatékonysága a potenciálgát szélessége mellett az alagutazó részecske tömegének, illetve a potenciálgát magasságának növekedésével csökken. Az alagúteffektus általában a könnyű elektronok mozgásakor jelentős, de szerepet játszik az alfa-sugárzás kibocsátásakor is.Relativisztikus kvantummechanika Induljunk ki Heisenberg határozatlansági relációiból. Az egyik azt állítja, hogy nem lehetséges az impulzus és a helykoordináta együttes tetszőleges pontosságú mérése, a másik pedig azt, hogy nem lehetséges az energia mérése úgy kétszer egymás után, hogy a két mérés tetszőleges rövid idővel követi egymást, és a két energiamérés tetszőleges pontossággal ugyanazt az értéket adja. Az utóbbi esetben nagyon fontos tehát hangsúlyozni, hogy nem az energia és idő együttes mérésének tetszőleges pontosságáról van szó, fizikai, pontosabban kvantummechanikai értelemben ugyanis az időt nem lehet mérni, az egy külső paraméter. Amikor időmérésről beszélünk, azt mindig klasszikus newtoni, vagy speciális einsteini – ami ugyanaz – értelemben tesszük.
A helyre és időre vonatkozó határozatlansági relációban ténylegesen a sebesség lép fel, ebből származódik a klasszikus impulzus, ahol egyikre sincs semmilyen felső határ. A relativisztikus esetben viszont a sebességnek van felső határa, a fénysebesség, ezért ott az impulzusnak is van felső határa. Nagyon fontos megjegyezni, hogy az impulzusra ez a felső határ csak a határozatlansági relációban létezik, ahol az impulzust a sebességből származtatjuk. Egyébként az impulzusnak nincs felső határa, ahogy az energiának sem, amivel az impulzus négyesvektort alkot, hacsak nem a Planck-energia és a Planck-impulzus. A határozatlansági relációban fellépő felső impulzushatár miatt viszont a koordinátamérés pontosságára abszolút alsó határ lép fel, azaz a relativisztikus kvantummechanikában a koordinátamérés elveszti értelmét. A koordinátareprezentáció helyett kizárólag az impulzusreprezentációt használhatjuk, azaz a kölcsönhatások és mérések során az energia és impulzus változásait tudjuk csak pontosan követni, implicit módon feltételezve, hogy elég hosszú ideig mérünk. A tökéletes méréshez végtelen hosszú ideig kellene mérnünk, de a klasszikus mérőeszközeinknek amúgy is van egy mérési hibája, és a mérési idő elég hosszú ahhoz, hogy az elvi hiba ezen gyakorlati hibán belül legyen.

A megtalálási valószínűségben a hullámfüggvény abszolútérték-négyzete, azaz a hullámfüggvény és komplex konjugáltjának a szorzata lép fel. A nem relativisztikus elméletben ez, a sűrűség-eloszlás, egy skalármennyiség, a relativisztikus elméletben viszont a négyes áramsűrűség időszerű komponense. A komplex konjugált viselkedése ezért a nem relativisztikus elméletben tökéletesen meghatározott az eredeti hullámfüggvény viselkedése alapján, a relativisztikus elméletben viszont a komplex konjugált önálló életre kel, önálló szabadsági fokokká válik. Matematikailag ez azt jelenti, hogy a nem relativisztikus elmélet kétkomponensű komplex spinorjai helyett négykomponensű Dirac-spinorok tudják leírni a részecskéket, s fizikailag a részecskék száma megduplázódik, mert megjelenik (majdnem) mindegyiknek az antirészecskéje is.
Az antirészecskék létezése a Lorentz-invariancia egyenes következménye. Másrészt az antirészecskék kísérleti megfigyelése a Lorentz-invariancia és a speciális relativitáselmélet egyik kísérleti bizonyítéka. A relativisztikus kvantummechanika Dirac első értelmezésében állandóan jelenlevő végtelen sok részecskét (Dirac-tenger) követelt meg az antirészecskék leírására, amelyek betöltötték az összes lehetséges alsó energiájú állapotot. Ez az értelmezés még fermionok esetén is kicsit kényelmetlen, bozonok esetén viszont, ahol egy állapotban akárhány részecske lehet, értelmetlen. Olyan elméletre volt szükség, ami le tudja írni a részecskék számának változását. A megoldást a második kvantálás, az eddig függvény vagy matematikai vektor hullámfüggvény operátorosítása jelentette.
A hullámfüggvény részecskekeltő és eltüntető operátorok lineáris kombinációjává vált, s ezek az operátorok a részecskeszám-téren (Fok-tér) hatottak. Az így megszületett kvantumtérelmélet ezen leírási módszerét Fok-reprezentációnak nevezzük a kezdeményező Vlagyimir Alexandrovics Fok orosz fizikus, matematikus után. Az első ilyen elmélet, a kvantum-elektrodinamika, az elektromágneses kölcsönhatás kvantumtérelméletének sikere ösztönzőleg hatott a kvantumtérelmélet további általánosításai irányában. A téridő szimmetriái után az ún. belső szimmetriák felfedezése, amiknek legrégebben ismert példája az elektrodinamika mértékinvarianciája vezetett a mértéktérelméletek kifejlesztéséhez. Ezek igen gyümölcsözőnek bizonyultak az anyag olyan kölcsönhatásainak, mint az elektromágneses, gyenge és erős kölcsönhatás kvantumtérelméleti leírásában. A kvantummechanika szigorú, formális matematikai felépítésében, mely többek közt Paul Dirac és Neumann János nevéhez fűződik, a kvantummechanikai rendszerek lehetséges állapotait egységvektorokkal  („állapotvektorok”) reprezentáljuk, melyek a komplex szeparábilis Hilbert-tér egységgömbjét alkotják (az „állapotteret”). A Hilbert-tér pontos meghatározása az adott fizikai rendszertől függ, például ha egy elektronburok elemeinek a tér adott pontjában való tartózkodási valószínűségét, az elektronfelhő „intenzitását” akarjuk leírni, akkor célszerű a négyzetesen integrálható függvények Hilbert-terét használni ennek leírására, míg egyetlen elektron spinjének állapotterét pusztán két komplex sík direkt szorzata is leírhatja.
A kvantumállapotok időbeli változásait nem relativisztikus esetben a Schrödinger-egyenlet – másodrendű differenciálegyenlet –, relativisztikus esetben a Dirac-egyenlet – elsőrendű differenciálegyenlet – írja le, melyben a Hamilton-függvény, a rendszer összenergiáját leíró operátor felelős az időbeli változásért (a Dirac-egyenlet csak a feles spinű részecskéket írja le). Minden megfigyelhető mennyiséget egy sűrűn definiált hermitikus (ejtsd: ermitikus) lineáris operátor reprezentál. Egy megfigyelhető mennyiség minden saját állapotához az operátor egy sajátvektora tartozik, és az ehhez tartozó sajátérték a mennyiség értékét adja az illető saját állapotban. Ha az operátor spektruma diszkrét, a mennyiség csak ama diszkrét sajátértékeket veheti fel. Ezeket a sajátértékeket hívjuk kvantumszámoknak. Például a szabad részecske energia-operátorának spektruma folytonos, míg például a harmonikus oszcillátor energia-spektruma diszkrét.
Egy mérési eljárás alatt annak a valószínűsége, hogy a rendszer hullámfüggvénye valamelyik saját állapotba omlik össze, a sajátállapotvektor és az állapotvektor skaláris szorzatának abszolútérték-négyzete. A mérés lehetséges eredményei az operátor sajátértékei, melyek Hermite-féle operátorok esetén valós számok – ez magyarázza, hogy miért hermitikus operátorokat használunk. Egy megfigyelhető esemény valószínűség-eloszlását egy adott állapotban a megfelelő operátor spektrális dekompozíciójával számíthatjuk ki. A Heisenberg-féle határozatlansági reláció azzal a formális állítással írható le, hogy bizonyos megfigyelhető eseményekhez tartozó operátorok nem felcserélhetőek.
Nagyon fontosak az olyan fizikai mennyiségekhez tartozó operátorok, amelyek egymással felcserélhetők. Az ilyen fizikai mennyiségek egyszerre tetszőleges pontossággal mérhetők, ezért alkalmasak egy fizikai rendszer állapotának a jellemzésére. Az egymással felcserélhető operátoroknak ugyanis van közös saját állapotrendszere, amihez az említett összes felcserélhető operátornak határozott sajátértéke, azaz az illető fizikai mennyiség határozott értéke tartozik. Mindezen operátorok közül a Hamilton-operátor kitüntetett helyzetű, ennek sajátértékei az energia lehetséges értékei. A Hamilton-operátorral felcserélhető operátorok megmaradó fizikai mennyiségeket írnak le. Alapvető fontosságú annak megértésében, hogy az egyes atomok hogyan állnak össze molekulákká. A kvantummechanika kémiai alkalmazását kvantumkémiának hívjuk. A kvantummechanika kvantitatív rálátást nyújt a kémiai kötések mibenlétére, arra, hogy mely molekulák kedvezőbbek energetikailag melyekhez képest, és kb. mennyivel. A számítási kémia legtöbb számolása a kvantummechanikán alapul. A modern technológia jórészt olyan skálán működik, ahol a kvantumeffektusok jelentősek. Ezekre példa többek között a lézer, az elektronmikroszkóp és a mágnesesrezonancia-képalkotás (MRI). A félvezetők tanulmányozása vezetett a dióda és a tranzisztor kifejlesztéséhez, amik nélkülözhetetlenek az elektronikában.
A kutatók ma a kvantumállapotok erőteljes befolyásolásának módszereit keresik. Erőfeszítéseket tesznek a kvantumkriptográfia kifejlesztésére, ami az információátadás garantáltan biztonságos módját jelenti majd. Egy távlatibb cél a kvantumszámítógép kifejlesztése, ami a várakozások szerint bizonyos számolásokat exponenciálisan gyorsabban végezne el, mint a klasszikus számítógép. Egy másik aktív kutatási terület a kvantum-teleportáció, ami kvantumállapotok tetszőleges távolságra való átvitelével foglalkozik. A kezdetek óta a kvantummechanika ösztönökkel ellenkező eredményei erős filozófiai vitát keltettek és sok interpretációhoz vezettek. Még az olyan alapvető dolgoknak, mint Max Born valószínűségi amplitúdókat és valószínűségi eloszlásokat érintő alapszabályainak is évtizedekre volt szükségük ahhoz, hogy elfogadják őket. A nagyrészt Niels Bohrnak köszönhető koppenhágai értelmezést ma a fizikusok nagy többsége elfogadja. Eszerint a kvantummechanikai jóslatok valószínűségi természete nem magyarázható más, determinisztikus elméletek segítségével, és nem egyszerűen a mi korlátozott tudásunkat jeleníti meg. A kvantummechanika azért nyújt valószínűségi jóslatokat, mert a világegyetem természete maga valószínűségi és nem determinisztikus. Albert Einstein, aki maga is a kvantumelmélet egyik megalapozója volt, nem szerette a determinisztikusságnak a mérés során való elvesztését. Úgy tartotta, hogy lennie kell egy helyi rejtett változós elméletnek a kvantummechanika alatt, s ennélfogva a jelen elmélet nem teljes.
Az elmélethez ellenvetések sorozatát gyártotta, amelyek közül a leghíresebb Einstein–Podolsky–Rosen-paradoxon (EPR-paradoxon) néven vált ismertté. John Bell megmutatta, hogy az EPR-paradoxon kísérletileg tesztelhető különbségre vezet a kvantummechanika és a lokális rejtett változós elméletek között. Kísérleteket végeztek és kimutatták, hogy a kvantummechanika a helyes és a világ nem magyarázható ilyen rejtett változókkal. A kísérletekben lelt bizonyos "rések" azonban azt mutatják, hogy a kérdés még nincs teljesen lezárva. Hugh Everett sokvilág-interpretációja, amit 1956-ban fogalmazott meg, azt állítja, hogy a kvantummechanika által megengedett lehetőségek mind együtt megjelennek egy multiverzumban, ami sok független, párhuzamosan létező univerzumból áll. Ez nem jelenti új axióma bevezetését a kvantummechanikában, hanem éppen ellenkezőleg, egynek, a hullámcsomag összeomlásának axiómájának az elvetését jelenti. Az összes lehetséges konzisztens állapot és a mérőberendezés (beleértve a megfigyelőt is) is egy valódi fizikai (nemcsak formális matematikai, mint más interpretációkban) kvantum-szuperpozícióban vannak. Különböző rendszerek konzisztens állapot-kombinációinak ilyen szuperpozícióját összefonódott állapotnak hívjuk. Míg a multiverzum determinisztikus, mi nem determinisztikus, valószínűségi viselkedést érzékelünk, mivel mi csak az univerzumot tudjuk megfigyelni, azaz csak a mi általunk lakott világnak az említett szuperpozícióhoz való konzisztens állapot hozzájárulását.
Everett interpretációja tökéletes összhangban van John Bell kísérleteivel, és ösztönösen is érthetővé teszi őket. 1900-ban Max Planck bevezette az energia kvantálását, hogy levezessen egy, a feketetest által kisugárzott energia frekvenciafüggését helyesen leíró képletet. 1905-ben Einstein a fotoelektromos hatást azzal a feltételezéssel tudta magyarázni, hogy a fény részecskékből, fotonokból áll. Az ötlet, miszerint a foton energiájának kvantumokból kell összeadódnia, jelentős eredmény volt, mivel megszüntette a lehetőségét annak, hogy a feketetest-sugárzás végtelen nagy energiát vigyen magával, ahhoz képest, ha kizárólag csak hullámokkal kellett volna a jelenséget magyarázni. 1913-ban Bohr megmagyarázta a hidrogénatom színképvonalait, ismét a kvantumosság feltételezésével, 1913 júliusában megjelent Az atomok és molekulák szerkezete c. cikkében. 1924-ben terjesztette elő Louis de Broglie anyaghullám-elméletét, mely szerint minden anyag rendelkezik hullámtulajdonsággal és megfordítva.
Ezek az elméletek, bár sikeresek, de szigorúan véve fenomenologikusak (jelenségszintűek) voltak, a kvantálásnak nem létezett precíz bizonyítása. Ezeket együtt a régi kvantumelmélet néven ismerik. A modern kvantummechanika 1925-ben született meg, amikor Heisenberg kifejlesztette a mátrixmechanikát, Schrödinger pedig a hullámmechanikát, majd felírta a Schrödinger-egyenletet. Schrödinger utána megmutatta, hogy a két megközelítés egyenértékű. (Valamivel Schrödinger előtt Lánczos Kornél Heisenberg egyenleteiből kiindulva integrálalakban fogalmazta meg a kvantummechanikát[3]). Heisenberg határozatlansági relációját 1927-ben fogalmazta meg, és a koppenhágai értelmezés is nagyjából ekkor öltött formát. Az 1927-es évet követően Paul Dirac egyesítette a kvantummechanikát a speciális relativitáselmélettel, felfedezve az elektron Dirac-egyenletét. Ő volt az első abban is, hogy operátorelméletet használt, és bevezette a nagy hatású braket-jelölést, amit 1930-as híres könyvében tett közzé. Ugyanebben az időben Neumann János lefektette a kvantummechanika precíz matematikai alapjait, mint a Hilbert-terek lineáris operátorainak elméletét, és ezt közzétette hasonlóképpen híres 1932-es könyvében. Ezek a munkák, mint sok más is az alapító időszakból, azóta is érvényesek és széles körben használják őket.
A kvantumkémia úttörői Walter Heitler és Fritz London voltak, akik 1927-ben tették közzé tanulmányukat a hidrogénmolekula kovalens kötéséről.
A kvantumkémiát rengeteg tudós fejlesztette tovább, többek között az amerikai Linus Pauling. 1927-től kezdődően kísérletek folytak arra, hogy a kvantummechanikát egyes részecskék helyett mezőkre alkalmazzák, amivel megszülettek a kvantumtérelméletek. A korai munkákban többek között Dirac, Pauli, Weisskopf és Jordan vett részt. A kutatások a kvantum-elektrodinamika megfogalmazásában csúcsosodtak ki az 1940-es években, melyben Feynman, Dyson, Schwinger és Tomonaga játszott nagy szerepet. A kvantum elektrodinamika az elektron, a pozitron és az elektromágneses mező kvantumelmélete, és a többi kvantumtérelmélet modelljéül szolgált. A kvantum-színdinamika elméletét az 1960-as évek elejétől kezdve öntötték formába. Ma ismert alakját Politzer, Gross és Wilzcek munkássága következtében 1975-ben nyerte el. Schwinger, Higgs, Goldstone, Glashow úttörő munkájára építve, Weinberg és Salam egymástól függetlenül megmutatták, hogyan lehet a gyenge kölcsönhatást és a kvantum-elektrodinamikát egyetlen elektrogyenge kölcsönhatásban egyesíteni.A kvantumszámítógép olyan számítóeszköz, amelyik úgy végez számításokat, hogy kvantummechanikai jelenségeket használ, mint a kvantum-szuperpozíció és a kvantum-összefonódás.
Egy kvantumszámítógép képes lehet olyan számítások hatékony végzésére, amik a hagyományos, digitális számítógépekkel gyakorlatilag megoldhatatlanok. Kutatását és későbbi megvalósítását elsősorban kormányszervek támogatják. A kvantumszámítógép gyakorlati megvalósítása a kezdeti lépéseknél tart, egyelőre kísérleti fázisban van. A kvantumszámítógép a számításokat egymással párhuzamosan hajtja végre, ezért programozásához speciális programozási módszer szükséges. A kvantummechanikai hatások miatt a rendszert közel abszolút nulla fokra kell folyamatosan hűteni. Vezetékezése koaxiális kábelekkel történik, amik szupravezető tulajdonságúak (ezek szintén igen alacsony hőmérsékleten működnek).
A bemenetet mikrohullámú impulzusok jelentik, amik befolyásolják a részecskék állapotait. A kimenő jeleket magas szintű kvantummechanikai ismeretekkel rendelkező operátorok értelmezik. Nagyobb a hűtő mint a számítógép. Általában, amikor a fizikusok összefonódást váltanak ki részecskék között, akkor ettől függetlenül a részecskék valamilyen módon még ezután is megkülönböztethetőek. Csak mostanában sikerült bemutatni, hogy lehetséges olyan összefonódást kiváltani, ami ténylegesen teljesen azonos részecskéket eredményez. Érdekes módon ez az összefonódás a részecskék megkülönböztethetetlensége miatt létezik – anélkül hogy kapcsolat lenne közöttük. Most a legújabb kísérletükben a fizikusok még egy lépéssel tovább mentek és demonstrálták, hogy az azonos részecskék közötti összefonódás felhasználásának a kvantum technológiában is lehetnek felhasználási területei.
A fizikusok magyarázata szerint az egymástól függetlenül előkészített azonos részecskék összefonásához, a részecskéknek térben fizikailag közel kell lenniük egymáshoz – a részecskék hullámfüggvényeinek térben legalább részben egybe kell esniük. Ha ez a térbeli egybeesés nem áll fenn, akkor nem is lehet összefonódás, hogyha részleges egybeesés áll fenn, akkor az egybeeső térrészen folytatott mérésekkel feltételes összefonódás váltható ki egy bizonyos valószínűséggel.
Csak, abban az esetben áll fenn teljes összefonódás, amikor a hullámfüggvények teljesen egybeesnek – viszont az összefonódás mértéke függ a mérésektől és a hullámfüggvények alakjától is. A kvantum bitekkel exponenciálisan nagyobbak az algoritmusok. (Grover algoritmus) A Shor-algoritmus (kvantumszámítógépekre tervezett) kvantumalgoritmus, amellyel polinomiális időben végezhető el az egész számok prímfelbontása. Az algoritmust feltalálójáról, Peter Shor amerikai matematikusról nevezték el. Ha N jelöli a számot, amelynek prímtényezőit keressük (tehát a bemenet mérete log N), akkor az algoritmus O((log N)3) időben fut le. Ez azt jelzi, hogy a prímfelbontási probléma a BQP bonyolultsági osztályba tartozik. A Shor-algoritmus hatékonysága a kvantum Fourier-transzformáció és az ismételt négyzetre emelésekkel végrehajtott moduláris hatványozás hatékonyságán alapszik. Gyors szimulációra, hatékony titkosításra egy RSA prímszámfaktorizációval kivállóan alkalmas, két prím szám szorzata.

Nincsenek megjegyzések:

Megjegyzés küldése