2022. március 20., vasárnap

Villám keletkezése

Kulcszavak

Rezgés,kristály,méret ,küszöb,páratartalom,nyomás,hőmérséklet,jégkristály,kritikusméret,kritikustömeg
jég hó,nyomáskülömbség

A felhőképződés

A levegő páratartalma okozza a felhőt.  A vízmolekula OH csoportjai rezgéseket végeznek, de ennek frekvencia tartománya olyan, hogy a vibrációs átmenetekhez nem tartozik látható fény, és ezért a különálló vízmolekula önmagában nem látható. Ha azonban a vízmolekulák kristályokat hoznak létre, akkor megfelelő méret esetén már elnyelhetnek fényt a látható tartományában is, és így megfigyelhetjük az égen a sárga bárányfelhőket. Erről már írtam korábban a „Miért kék az ég” című bejegyzésben. Annak a feltétele, hogy ezek a vízkristályok mikor jönnek létre, függ a helyi páratartalomtól, a nyomástól és a hőmérséklettől. Ezek a lebegő vízkristályok laza kapcsolatban állnak egymással, ez a felhő, aminek átlagsűrűsége nem haladhatja meg az alatta levő levegőjét. Ha a körülmények kedvezőek nagyobb jégkristályok képződésének és megnövekszik ezek sűrűsége, akkor elkomorodik az ég, kialakulnak a sötét esőfelhők, sőt viharfelhők. Ha a jégkristályok elérnek egy kritikus méretet, akkor megindulnak a jégkristályok lefelé, amelyek az alatta lévő melegebb légrétegekben megolvadnak és eső formájában érkeznek meg. De nyáron előfordul, hogy a nagy jégkristályoknak nincs elég idejük, hogy megolvadjanak, ekkor jön létre jégeső. Télen, amikor a föld felett is nulla fok körüli, vagy az alatti a hőmérséklet, akkor laza jégkristályok hullnak a földre, ekkor havazik.

A villám kialakulása

A vihar villámlással és mennydörgéssel jár, Ha nagy a légköri nyomáskülönbség, akkor a felhők gyorsan száguldanak és a felhők és az alatta levő légtömegek között súrlódás jön létre, ami a vízmolekulák elektronjait leszakíthatja, ekkor jönnek létre az ionok. Az ionok egy része negatív, mert a leszakított elektronok is helyet keresnek maguknak, másik része az elektron elvesztése miatt pozitív lesz. Az elektron fölösleggel rendelkező ion kissé nehezebb, emiatt a felhők alsó része lesz negatív, míg a fölső rész fog pozitív töltéssel rendelkezni. Kialakul tehát egy nagy kondenzátor. Maga a földfelszín is ionizálódik, amelynek töltése pozitív. Ha a feszültség a kondenzátor két „lemeze” között meghalad egy kritikus értéket, akkor elektromos kisülés következik be. Így jön létre a felhőkben, illetve a felhők és a föld között is villám. 

Égzengés és hangrobbanás

A töltött vízionok sebessége sokszorosan meghaladja a hang sebességet, ezért a mennydörgés voltaképpen hangrobbanás. Ez többször is megismétlődik, mert a nagy sebességű villám előtt feltorlódik a levegő, ami egy pillanatra lecsökkenti a sebességet és irányváltoztatásra kényszeríti a villámot. Ezért halad a villám cikk-cakkokban. A gyorsuló elektromos töltések fénysugarakat bocsátanak ki, ez hozza létre a villám éles fényét. A gyorsulás olyan nagy is lehet, ami már a láthatónál nagyságrendekkel nagyobb energiájú gamma sugarakhoz is vezethet.

A gamma-sugárzás (jele γ), 

nagyfrekvenciájú elektromágneses sugárzás, melynek frekvenciája 1019 Hz feletti, illetve hullámhossza 20–30 pikométer alatti. A gamma-foton energiája 30–50 keV felett van, ezért ionizáló hatású.

A gamma-sugárzás az elektromágneses spektrumban a röntgensugárzás rövidebb hullámhosszú tartományához csatlakozik. Van is köztük bizonyos átfedés hullámhosszban, frekvenciában illetve a foton energiatartalmában, hiszen a röntgensugarak akár a 60–80 keV-os tartományig terjedhetnek. Ezért nem is az energiatartalmuk alapján, hanem a keletkezésükben szerepet játszó fizikai folyamatok alapján különböztetjük meg őket. Gamma-sugárzás keletkezik a gerjesztett atommagok alacsonyabb energiájú állapotba történő átmenetekor, az úgynevezett gamma-bomláskor. Ilyen folyamat kíséri sok esetben az alfa- és béta-bomlást, valamint a magreakciókat, de gamma-foton keletkezik a pozitron-elektron találkozásakor bekövetkező annihilációkor is.

A gamma-sugarak (mint minden más ionizáló sugárzás) égési sebeket, rákot és genetikai mutációkat idézhetnek elő.

A gamma-sugarak elnyelődése nagy atomtömegű és sűrűségű elemeken való áthaladáskor a legnagyobb mértékű. A gamma-sugárzás elleni védekezésül éppen ezért általában az ólmot használják. Az atomreaktorok aktív zónáját azonban olyan több méter vastag nehézbeton fallal veszik körül, amit magas kristályvíztartalmú nehézfémmel, például báriummal (barit) adalékoltak. Minél nagyobb energiájú a gamma-sugárzás, annál vastagabb réteg szükséges a védekezéshez.

Gömbvillám

 A gömbvillám nagyon ritka jelenség, mert több feltétel egyidejű teljesülése kell a létrejöttéhez. A felhő apró jégkristályai egymással laza kapcsolatban vannak, és amikor töltésre tesznek szert az ionok között taszítás jön létre. A taszító erő akkor a legkisebb, ha a töltések egy gömbfelületen helyezkednek el, ezáltal jöhetnek létre a felhőben az elektromos töltéssel rendelkező gömbök. Ha azonban túl sok a töltött ion, akkor ez a gömb szétszakadhat, és emiatt nagyok kritikus körülmények kellenek a fennmaradáshoz. A másik fontos feltétel a gömbök sűrűsége, ha ez meghaladja a körülötte levő levegő sűrűségét, akkor ritka esetben ezek a gömbök lesüllyednek és leereszkedhetnek a föld felé. Ezeket a töltött gömböket nevezzük gömbvillámnak. Úgy tudom, hogy japán tudósoknak már sikerült gömbvillámokat laboratóriumi körülmények között is előállítani.


A villám nagy energiájú, természetes légköri elektromos kisülés. Keletkezhet felhő–föld és felhő–felhő között is. Áramerőssége általában 20-30 000 amper, de kivételes esetben meghaladhatja a 300 000 ampert is.A villám egyfajta elektromos gázkisülés, ami felhőn belül, felhők között, vagy a talaj és felhők között jön létre. Többnyire elágazásos szerkezetű, de van felületi villám is, amely a felhők felületén keletkezik. Ritkább jelenség az egyenes villám és a gömbvillám. E két utóbbira nincs általánosan elfogadott tudományos magyarázat. Az egyenes villám jellemzője, amiről a nevét is kapta az, hogy a vonala nélkülözi a villámokra általában jellemző elágazásokat (a villám vonala valójában nem egyenes, hanem íves is lehet). Az egyenes villám hurkot is leírhat.

A villám keletkezésének pontos folyamata még tudományos viták tárgya, de elfogadott magyarázat, hogy a villám kialakulása a felhők vízcseppjeinek, jégkristályainak súrlódására, széttöredezésére vezethető vissza, aminek következtében az elektromos töltések szétválnak a felhőn belül. A felhő felső felén a pozitív, alul a negatív töltések halmozódnak fel.

A víz légkörben való körforgása során a nedvesség felhővé áll össze. A felhőt sok millió, apró vízcsepp alkotja, ugyanakkor jégkristályokat is tartalmaz, ezek súlya egyelőre annyira kicsi, hogy a levegőben lebegnek. A földfelszín felőli párolgás felfelé mozgatja az apró vízcseppeket, amik útjuk során összeütköznek más hasonló vízcseppekkel, jégkristályokkal, vagy a lefelé hulló hópelyhekkel. Az apró ütközések következtében a felfelé haladó nedvességben elektronhiány lép fel, így elektromos töltésszétválasztás jön létre a felhőn belül. Az elektronok a felhő alsóbb területén halmozódnak fel, ami így elektromosan negatív töltésű lesz.

Az ütközéseken felül a megfagyásnak is fontos szerepe van. Ahogy a felfelé szálló nedvesség a felhő felsőbb részében hidegebb levegővel találkozik, elkezd megfagyni, tömege növekedni kezd, ezért lefelé hullik és közben negatív töltésűvé válik, a még nem fagyott, felfelé haladó nedvesség pedig pozitív töltésű lesz.

A töltésszétválasztás elektromos teret hoz létre, ami az elhelyezkedő töltéseknek megfelelően alul negatív, felül pozitív irányultságú. Az elektromos tér erőssége a felhalmozott elektromos töltésekkel arányos. Ahogy ennek az erőtérnek az erőssége egyre növekszik, a földfelszínben lévő negatív töltésekre taszító erőt gyakorol, így azok a földben mélyebbre süllyednek. A földfelszín ennek hatására pozitív töltésű lesz.

Amikor az elektromos tér erőssége eléri a több tízezer Volt / centiméter értéket, az elektromos töltésekre ható vonzóerő miatt a töltések a levegő molekuláiban is kezdenek szétválni, a felhő alja a közelében lévő pozitív töltésű levegőmolekulákra vonzóerőt gyakorol, így azok felfelé, a felhő alja felé mozdulnak el. A töltések szétválását a levegőben ionizációnak nevezik. Az ionizált levegő (más néven: hideg plazma) elektromos vezetőképessége sokkal jobb, mint a nem-ionizált (de egyéb tulajdonságaiban azonos) levegőé (gyakran az elektromosan jól vezető fémeket is úgy jellemzik, mint pozitív atommagokat, amiket könnyen mozgó elektronfelhő vesz körül). Az elektronok kis tömegük miatt könnyen elmozdulnak, és áramlásuk elnevezése: elektromos áram. A levegő ionizációs folyamata során vékony, hosszabb-rövidebb járatok alakulnak ki a felhő és a földfelszín között, amikben az elektronok mozogni tudnak.

A villám nem egy lépésben csap le, mivel ezek a hosszabb-rövidebb vezető szakaszok nem egyszerre alakulnak ki, hanem fokozatosan. A járatok általában nem pontosan a felhő és a föld közötti legrövidebb egyenesen keletkeznek, hanem ezek jellemzően cikk-cakk alakban haladnak. Ez amiatt van, mert az ionizáció mértékét befolyásolja a levegőben található apró porszemcsék elhelyezkedése, amik elősegítik az ionizációt. Így az elektromosan vezető csatorna abban az irányban alakul ki, ahol a jobban vezető szakasz megtalálható. A már kialakult apró vezető szakasz elősegíti további vezető szakaszok kialakulását, mivel a töltések a vezető szakaszban annak végéig el tudnak mozdulni, tehát módosítják a korábban kialakult elektromos teret, vagyis az erőviszonyokat.

A földfelületről, főként a kiemelkedő, hegyes részekből is megindul (kis lépésekben) a pozitív előjelű elektromosság cikkcakkos áramlása a felhő felé, de azt sohasem éri el. A föld felől kiinduló áramlás jellegzetessége a lilás, rózsaszínes fény (ami persze csak nagysebességű kamera felvételén észlelhető). A felhőből kiinduló nyúlvány általában fehér színű.

Az elektromosan vezető csatornák kialakulási folyamatának végén a felhő és a földfelszín összekapcsolódik egy vagy több, elektromosan vezető csatornán keresztül, amin először egy gyengébb „elővillám” fut végig, majd egy vagy több erősebb töltésáramlás megy végbe, gyakran ugyanazon a csatornán, hiszen abban a pillanatban azon a legkisebb az elektromos ellenállás.

Amikor a kétféle töltés találkozik, a töltések kiegyenlítődnek. A folyamat során a villámban haladó elektromos áram erősen felhevíti a levegőt, ami hirtelen kitágul, majd összeomlik. Ez erős fénnyel és hangrobbanással, azaz nagy robajjal jár. Ugyanazon az ionizált légcsatornán több villám is áthalad (akár 30-40), ezért a szemtanú számára úgy tűnhet, hogy a fő villámcsapás hosszabb ideig tartott, mint az azt megelőző gyengébb villanások. Ezt az illúziót erősíti, hogy a többszöri villámlással járó morajlások egybeolvadnak.

A kisülésben szállított töltésmennyiség mindössze 1-2 coulomb, az átlagosan 0,2 s-ig tartó kisülési időtartam alatt 30-40 000 amperes áramerősség lép fel. A villám sebessége 180 km/s (egy 18 km magasságban lévő felhőtől a földig a kész villám 0,1 másodperc alatt végighalad, alacsonyabb felhő esetén az idő még rövidebb). A hőmérséklet elérheti a 30 000 kelvint. A villámok 75%-a felhőn belül zajlik le. A villám fénye látható- és UV-fényből áll.

Ha a villám homokos talajba csap, üvegszerű anyag keletkezik, aminek a neve fulgurit.A zivatarokban vagy a szupercellában vihar alkalmával többféle elektromos kisülés megfigyelhető.Megkülönböztetjük továbbá a „szárazvillám” és „nyári villám” jelenségeket is. A köznyelv a „szárazvillám” kifejezéssel jelzi, ha villámláskor nem esik az eső, azaz a felhőből hulló csapadék nem éri el a talajt. A „nyári villám” a szemlélőtől annyira távol látható, hogy onnan hanghatás nem, vagy csak gyengén érkezik. A távoli helyen ilyenkor általában esik az eső, de azt az észlelő nem érzékeli.

Szárazvillám

A „szárazvillám” veszélyessége abban áll, hogy nem jár a talajra hulló csapadékkal, ezért könnyen bozóttüzeket okoz.A villám erősen felhevíti a levegőt (a Nap felszínének hőmérsékletére), amely hirtelen kitágul és összeütközik a környező légtömegekkel, ez hangrobbanást okoz, ami nagy robajjal jár. A hosszabban hallható dörej több villám következtében alakul ki, amik sűrűn követik egymást.A fény és a hang terjedési sebessége különböző. Ugyanazt a távolságot a fény sokkal gyorsabban teszi meg, ezért látjuk először a villámlást és csak utána halljuk a dörgést.Villámcsapás ellen nincs 100%-osan hatékony védekezés, azonban a károkat és a sérüléseket előre tervezéssel és odafigyeléssel jelentősen csökkenteni lehet.

Villámcsapás zivatar előtt is lehetséges, ezért komoly figyelmeztető jel a sötét és magas viharfelhő vagy az erősödő szél. A villámcsapások 10%-a verőfényes, kék égbolt mellett következik be, a zivatarfelhőtől akár 15 km távolságban.

Ha a villámlás után 30 másodpercen belül hallható a dörgés, akkor a szemlélő villámcsapás veszélyének van kitéve, mely ellen biztonságos menedék keresése a legjobb védekezés. Mivel fába gyakorta csap villám, ezért a fa közvetlen közelében való tartózkodás tovább fokozza ezt a veszélyt. Ehelyett zárt hely keresése, például autó vagy épület belseje a jobb megoldás, de a barlang nem alkalmas erre. Évente világszerte mintegy 2000 embert ér villámcsapás, ezeknek 25-33%-a halálos.

Villámhárító

A villámok elleni védekezés érdekében Benjamin Franklin feltalálta a villámhárítót. Ez egy, az épületek tetején elhelyezett és földelt fémrúd, amely az épület környezetében felhalmozódó elektromos töltéseket a villámhárítón keresztül elvezeti, illetve becsapódó villám esetén annak áramát a talajba vezeti, így az épületet megóvja a villámcsapás közvetlen károsító hatásaitól.

A villám azonban akkor is okozhat károkat, ha villámhárítóba csap. A villámhárítóban folyó nagy áramerősség hatására háromféle úton terjedhet tovább a villám hatása.

Konduktív csatolással: A földelt fémvezetéken végigfolyó, illetve a földben szétterjedő áram hatására megemelkedik a villámhárító és annak környékének potenciálja a távolabbi „föld” pontokhoz képest. Ez túlfeszültséghez vezet, ami átívelhet szigetelt vagy máshol földelt tárgyakhoz. 100 kA-es áramcsúcs és 2 Ω-os földelési ellenállás esetén 200 kV adódik, ami elegendő kb. 10 cm levegő átütéséhez.
Induktív csatolással: A villámhárítóban folyó áram mágneses tere feszültséget indukálhat a közelben található, attól független vezetőhurkokban is. Többszintes épület esetén az adatátviteli és villamos hálózatok és antennák rendszerében könnyen indukálódhatnak hatalmas túlfeszültségek. Egy villámvédelmi méretezésekben használt átlagos áramfelfutási értékkel, 100 kA/μs-mal számolva egy, a villámhárítótól fél méterre (falvastagság) elhelyezkedő, 10 m élhosszúságú négyzetben 620 kV is indukálódhat.
Kapacitív csatolással: A villámhárító és a hozzá kapcsolódó vezetők, vezetékek mint egyik fegyverzet és a környezetben található fémtárgyak, más vezetékek mint másik fegyverzet közötti kapacitás (szórt kapacitás) miatt a villámhárító potenciáljának megugrása a másik fegyverzet ellentétes irányú feltöltődéséhez vezet. Ez nagy áramerősségekkel és feszültségszintekkel járhat.Viharos időben nagy a villámcsapás veszélye horgászás, csónakázás, úszás (és egyéb, természetben végzett vízisport), továbbá kempingezés közben.

Szabadban végzett tevékenységet az aktuális időjárás-jelentés ismeretében érdemes megtervezni úgy, hogy villámlás esetén vissza lehessen vonulni egy közeli épületbe vagy egy teljesen zárt, felül is fémmel borított gépjárműbe. A járművön belül veszélyt jelenthet a fémes részek (pl. ajtókilincs, kormány) érintése vagy közelsége.

Zivatar idején lehetőség szerint kerülendő a kiemelkedő tárgyak (oszlop, torony, fák, elektromos távvezeték), barlangbejáratok, nyitott térségek, illetve vízfelületek közelsége. Magashegyi túránál, ha nincs hova behúzódni, legjobb a törmelékes kőzettel borított talajra leülni, zárt lábakkal. Közelben várható villámcsapás esetén a halláskárosodás veszélye csökkenthető a hang fülbe való jutásának tompításával, pl. hallásvédő fültokkal, vagy akár fülre szorított kézzel.

Közvetlenül villámcsapás előtt sercegést vagy recsegést lehet hallani, és a bőrön felállhat a szőr vagy bizsergés érezhető. Csoportban tartózkodva óvhatja a testi épséget, ha a csoport tagjai legalább 4-5 méter távolságot tartanak egymás között, és leguggolnak. Ilyenkor, ha az egyik csoporttagot mégis villámcsapás éri, a többiek segíteni tudnak rajta.Vihar idején csökkenthető a villám okozta áramütés kockázata a vízvezetékektől, ajtótól, ablakoktól, vezetékes telefontól, kézmosótól, zuhanyzótól, fürdőkádtól való távolmaradással. A kockázat tovább csökkenthető az elektromos készülékek kikapcsolásával, a kábelek konnektorból és antennacsatlakozóból való kihúzásával, valamint ezen eszközöktől való távolság tartásával. Az utolsó, hallható villámcsapás után még érdemes várni 30 percet, és csak aztán folytatni a tervezett tevékenységet. A túlfeszültség-védelemmel ellátott konnektor használata segíthet bizonyos anyagi károk megelőzésében, mert ha nem is a közeli vezetékrendszerbe csap a villám, lehet akkora pillanatnyi feszültségemelkedés, ami tönkreteheti az elektronikus készülékeket e védelem nélkül.Villámcsapás esetén az áramütés csak 10-20%-ban halálos, ha van a közelben életmentésre alkalmas személy, aki azonnal beavatkozik. Csonttöréssel csak akkor kell számolni, ha az áldozat leesett valahonnan, azonban szinte mindenkinél egyensúlyi, hallás- és látászavarok lépnek fel, mert az erős fény- és hanghatás (tartósan is) károsíthatja az érzékszerveket. Az érzékcsalódások akár órákig is eltarthatnak. A villámcsapás ún. áramjegyet hagy maga után: az áram ki- és belépési helyén világos színű, faág alakú bőrelhalás marad, ún. Lichtenberg-féle ábra. Ez hasonlóképpen kezelést igényel, mint más égési sérülés esetén.

Ha a villámcsapást szenvedett áldozat magánál van, és környezete további kockázatot jelent villámcsapás szempontjából, akkor kísérjük vagy szállítsuk kisebb kockázatot jelentő helyre. Az esetek többségében sem hallani, sem látni nem fog, ezért oda kell menni hozzá, és kézen fogva vezetni kell. Az áramütött személy nem hordoz elektromos töltést, így meg lehet fogni puszta kézzel.

Ha az áldozat nincs magánál, nem lélegzik, és értünk hozzá, azonnal kezdjük meg az életmentést, a szájból orrba való lélegeztetést.

Ellenőrizni szükséges a pulzust a nyaki ütőérnél legalább 20 másodpercig, és ha nem észlelhető pulzus, a lélegeztetéssel felváltva mellkaskompressziót (a köznyelv ezt szívmasszázsként ismeri) is kell alkalmazni, amely esetben a mellkasra mért pumpáló mozdulatok folytonosságán és ritmusosságán van a hangsúly. Ha az áldozat a nedves földön fekszik, helyezzünk alá valamilyen védőréteget, ami elszigeteli a talajtól, hogy csökkentsük a kihűlés veszélyét. Ha a pulzus visszatér, de az áldozat még nincs magánál, folytatni szükséges a lélegeztetést, amíg az újra meg nem indul. Az újraélesztést lehetőleg az eredeti helyszín közelében kell megkezdeni, és a sérült akkor szállítható el onnan, ha a pulzusa és a légzése helyreállt. a felhő alja negatív, a teteje pozitív töltéssel. Megfelelő körülmények esetén a felhőn belüli villámlás áttöri a felhő elektromos terét, és felfelé elektronok áramlata indul meg nagy sebességgel, amik ütköznek a levegő molekuláival, így gamma-sugárzás jön létre. Az elektronok kitörése eddigi ismereteink szerint 11-14 km magasságban történik.

 Érdekesség

A Faraday-kalitka az elektromágneses hatás kiküszöbölésére szolgáló, fémhálóval körülvett térrész, amelybe a fémháló védőhatása folytán a külső elektromos erőtér nem hatol be („árnyékolás”).

A gamma-sugárzás (jele γ), nagyfrekvenciájú elektromágneses sugárzás, melynek frekvenciája 1019 Hz feletti, illetve hullámhossza 20–30 pikométer alatti. A gamma-foton energiája 30–50 keV felett van, ezért ionizáló hatású.

A gamma-sugárzás az elektromágneses spektrumban a röntgensugárzás rövidebb hullámhosszú tartományához csatlakozik. Van is köztük bizonyos átfedés hullámhosszban, frekvenciában illetve a foton energiatartalmában, hiszen a röntgensugarak akár a 60–80 keV-os tartományig terjedhetnek. Ezért nem is az energiatartalmuk alapján, hanem a keletkezésükben szerepet játszó fizikai folyamatok alapján különböztetjük meg őket. Gamma-sugárzás keletkezik a gerjesztett atommagok alacsonyabb energiájú állapotba történő átmenetekor, az úgynevezett gamma-bomláskor. Ilyen folyamat kíséri sok esetben az alfa- és béta-bomlást, valamint a magreakciókat, de gamma-foton keletkezik a pozitron-elektron találkozásakor bekövetkező annihilációkor is.

A gamma-sugarak (mint minden más ionizáló sugárzás) égési sebeket, rákot és genetikai mutációkat idézhetnek elő.

A gamma-sugarak elnyelődése nagy atomtömegű és sűrűségű elemeken való áthaladáskor a legnagyobb mértékű. A gamma-sugárzás elleni védekezésül éppen ezért általában az ólmot használják. Az atomreaktorok aktív zónáját azonban olyan több méter vastag nehézbeton fallal veszik körül, amit magas kristályvíztartalmú nehézfémmel, például báriummal (barit) adalékoltak. Minél nagyobb energiájú a gamma-sugárzás, annál vastagabb réteg szükséges a védekezéshez.


Nincsenek megjegyzések:

Megjegyzés küldése