A Calabi–Yau sokaságok összetett sokaságok , amelyek K3 felületek általánosításai tetszőleges számú összetett dimenzióban (azaz tetszőleges páros számú valós méretben ). A Calabi-Yau tétel analógiáját olyan teljes Riemann-sokaságokra, amelyek nemnegatív skaláris görbülettel rendelkeznek, és amelyek a végtelenben aszférikusak. A kulcsfontosságú eszköz egy egzisztenciaeredmény tetszőlegesen nagy korlátos régiókra gyengén közepes-konkáv határral a Riemann-féle sokaságban, szublineáris térfogatnövekedéssel. Alkalmazásként ugyanezt az eszközt használjuk annak bemutatására, hogy egy teljes összehúzható Riemann-féle -sokaság pozitív skaláris görbülettel és szublineáris térfogatnövekedéssel szükségszerűen homeomorf. Eredetileg kompakt Kähler-elosztóként határozták meg őket, amelynek első Chern osztálya eltűnőben van , és Ricci-lapos mérőszámmal rendelkeznek, bár néha sok más hasonló, de nem egyenértékű definíciót használnak. Öt különböző típusú húrelmélet létezik A húrelmélet és az M-elmélet két egymásra épülő részecskefizikai modell, mely a részecskéket nem pontszerű, hanem kiterjedt objektumokként kezeli (húrok, membránok). A húrelméletnek a szuperszimmetriát is tartalmazó változatát gyakran szuperhúrelméletnek nevezik. Ezeket az elméleteket azért hozták létre, hogy az általános relativitáselméletet és a kvantummechanikát összhangba hozzák, és elkerüljék a részecskefizikának azokat a buktatóit, melyek a pontszerű részecskék feltételezésével előbukkannak. Az M-elméletben nemcsak húrokat, hanem membránokat és magasabb dimenziós objektumokat is feltételeznek. Jelenleg nincs semmilyen kísérleti tény, amely a húrelméletet igazolná vagy cáfolná. A húrelmélet elnevezést mind a 26 dimenziós bozonikus húrelméletekre, mind a szuperszimmetria felfedezése után annak hozzáadásával nyert szuperhúrelméletre szokták használni. Újabban gyakran a szuperhúrelméletet mondjuk húrelméletnek. Az 1990-es években Edward Witten és mások meggyőző bizonyítékokat találtak arra, hogy a különböző szuperhúr elméletek (öt különböző változata van) egy M-elméletnek nevezett 11 dimenziós elmélet határesetei. Ezzel indult el a második szuperhúr-forradalom. (Az M-elméletnek még a fekete lyukak termodinamikájában is sikerült olyan eredményeket elérnie, amelyek a korábbi számításokkal összhangban vannak.)
A húrelmélet főként annak köszönheti népszerűségét, hogy reményeink szerint képes az összes erőhatás leírását egyetlen elméletbe összesűríteni. A húrelméletnek köszönhető, hogy mélyebben sikerült megértenünk a szuperszimmetrikus térelméleteket, amelyek a részecskéket pontszerűnek tekintő standard modellnek lehetséges kiterjesztései.A húrelmélet egyik furcsa tulajdonsága, hogy feltételezi, hogy az univerzumnak sok dimenziója van, és megjósolja a számukat. Sem Maxwell elmélete az elektromágnességről, sem Einstein relativitáselmélete nem adja meg a dimenziószámot. A jól ismert 3 tér és egy idődimenziót "kézzel" helyezzük bele ezekbe az elméletekbe. Ezzel szemben a húrelméletben megjósolható a téridő dimenziószáma alapvető elvekből. (Adott dimenziószám szükséges ahhoz, hogy az elmélet Lorentz-invariáns legyen.) Az egyetlen probléma, hogy ha kiszámoljuk a szükséges dimenziószámot, akkor nem négyet (3 tér + 1 idő), hanem 26-ot, 10-et, illetve 11-et kapunk a bozonikus húrelméletben, a szuperhúrelméletben, illetve az M-elméletben.
Ezek a tények komolyan ellentmondanak a megfigyelt eseményeknek. A fizikusok a következő két lehetőség egyikével oldják meg a problémát. Az első módszer, ha összezsugorítjuk a hiányzó dimenziókat. Ez azt jelenti, hogy a 6 vagy 7 dimenzió olyan kicsi, hogy nem észlelhető a kísérleteinkben. A 6 dimenziós esetben ezt a Calabi–Yau-terekkel oldják meg. 7 dimenzióban úgynevezett G2 manifoldokkal. Lényegében a hiányzó dimenziókat úgy teszik kicsivé, hogy azok magukba hurkolódnak. A szokásos hasonlat erre a locsolócső. Távolról nézve egydimenziós alakzatnak, vonalnak látszik, de ha közelebb megyünk, láthatóvá válik a második kiterjedése, amely kör keresztmetszetű. Ehhez hasonlóan úgy gondoljuk, hogy a hiányzó dimenziók csak közelről nézve láthatóak. (Természetesen a locsolócső 3 dimenziós, de mi csak a felületén mozgunk. Ekkor a helyünket két számmal adhatjuk meg. Az egyik kitüntetett végétől való távolsággal és kerületén például a felső ponttól egyik kitüntetett körüljárási irányban mért távolsággal. Mivel a hely megadásához két adat kell és elegendő, ezért mondjuk, hogy a locsolócső felszíne kétdimenziós. A földfelszín is kétdimenziós, hiszen a földrajzi szélesség és hosszúság (két adat) ismeretében a hely adott.) A másik lehetőség az, hogy mi a világegyetemnek egy 3+1 dimenziós alterében élünk, ahol a +1 emlékeztet arra, hogy az idő egy másfajta dimenzió, mint a tér. Mivel ez a látásmód D-brán nevű matematikai objektumokkal írja le elméletét, ezért ezt bránvilág elméletnek nevezzük. Egy érdekes mellékterméke, hogy eszerint elképzelhető, hogy a kvantumgravitációs jelenségeket akár a CERN 2008-ban elindult gyorsítógyűrűjében, a Nagy Hadronütköztetőben (LHC) megfigyeljünk. Bár ez érdekes dolog, ebben a lehetőségben azért nem sokan hisznek. A húrelméletnek három komolyabb problémája van. Az első, hogy senki sem képes megoldani a húrok mezőelméletét, vagy hogy bármilyen más nemperturbatív eredményt hozzon ki a húrelméletből. A feladat kristálytiszta, de a sors iróniája, hogy a megoldása olyan technikákat igényel, amelyek túlmutatnak a fizikusok jelenlegi képességein. Érdekes tény, hogy miközben a huszonegyedik század fizikája véletlenül belepottyant a huszadik századba, a huszonegyedik század matematikája még nem született meg; s már csak ezért is él ez a probléma, hogy a jelenben e húrok mezőelméletét nem tudjuk megoldani. A második, hogy a 10−35 méter átmérőjű húrokat jelenlegi technikánkkal képtelenek vagyunk megfigyelni. A harmadik probléma az, hogy a kvantumtérelmélethez hasonlóan csak perturbatívan kezelhető (közelítések sorozatával pontos megoldás helyett). Bár komoly előrelépések történtek a nemperturbatív módszerek felé, a teljes elmélet nem írható le ily módon.
Nincsenek megjegyzések:
Megjegyzés küldése